AFHRL-TP-81-46 e, ;

ADA116510

STRUCTURES OF MEMORY
FOR CRITICAL FLIGHT INFORMATION

By

Roger W. Schvaneveldt
Timothy E. Goldsmith
Francis T. Durso
Kenneth Maxwell
Hector M. Acosta

Department of Psychology

New Mexico State University
Las Cruces, New Mexico 88003

Richard G. Tucker

479th TTW/Training Analysis
Holloman AFB, New Mexico 88330

OPERATIONS TRAINING DIVISION
Williams Air Force Base, Arizona 85224

June 1982

Interim
1 May 1980 — 31 July 1981

Approved for public release: distribution unlimited.

LABORATORY

. AIR FORCE SYSTEMS COMMAND

BROOKS AIR FORCE BASE,TEXAS 78235

g2 oY 07 022



NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely Government-related procurement, the United
States Government ineurs no responsibility or any abligation whatoever, The fact that
the Government may have formulated or in any way supplied the vaid drawings,
wpecifications, or other data, is not to be regarded by implication, or otherwise in any
inanner construed, as licensing the holder, or any other person or corporation; or as

conveying any rights or permission to manufacture, use, or sell any patenied invention
that may in any way bo relaied theroto.

The Public Affairs Office has reviewed thix paper. and it is releasable to the Nationa!

Technical Information Service, where it will be available 10 the general public,
including foreign nationals,

This paper has been reviewed and is approved for publication,

JOSEPH C. DEMAIO
Contract Monitor

MILTON E. WOOD, Technical Director
Operations Training Division

RICHARD G. CRONQUIST, Colonel, USAF
Chief, Operations Training Division

ST A T




)

Unelassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Enfored)

REPORT DOCUMENTATION PAGE

: READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPGRT NUMBER
AFHRL-TP-81-16

2. GOVT ACCESSION NO.

4D _AnE SAO

3. RECIPIENTY'S CATALOG NUMBER

4. TITLE (and Subtitle)

STRUCTURES OF MEMORY FOR
CRITICAL FLIGHT INFORMATION

5. TYPE OF REPORT & PERIOD COVERED
Interim < p 5

| May 1980 =31 July I‘)Hl

6. PERFORMING OG. REPORT NUMBER

7. AUTHOR(s)
Roger W. Schvaneveldt
Timothy E. Goldsmith Hector M. Acosta
Francis T. Durso Richard G. Tucker

Kenneth Maxwell

8. CONTRACT OR GRANT NUMBER(s)

F'i ¥()l.)-80 -0004

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Department of Psychology

10. PROGRAM ELEMENT.PROJECT TASK
- AREA & WORK UNIT NUMBER

New Mexico State University .6“02["
Las Cruces, New México 88003 . 23131313
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
HQ Air Force Human Resources Laboratory (AFSC) June 1982
Brooks Air Force Base. Texas 78235 13. '?;J;;BEH OF PAGES

Operations Training Division
Air Foree Human Resources Laboratory
Wilhiams A\ir Foree Base. Arizona 83221

T4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Otfice) 18,

SECURITY CLASS. (of this report)

Unclassified

1Sa, DECLASSIFICATION/ DOWNGRADING
SCHEDULE - )

16. DISTRIBUTION STATEMENT (of this Report) s

Approved for public release: distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, i ditferent from Report)

18. SUPPLEMENTARY NOTES

éritical flight information
development of flight concepts
flying training

structure of pilots” coneepls

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

.

v-‘

20 ABSTRACT (Continue on reverse aldﬂ i necessary and ldenllfy by block numbor)

" This paper reviews work that Has been done on defining and mt,aqurmg conceptual structures of rrmuﬂ ﬂvght
mfnrmalmn in Air Foree fighter pilots. Individuals with widely varying flight experience were tested. Cognitive
structures were defined by analytic procedures: e.g.. Multidimensional Smlmg (MDS) and General Weighted
Networks (GWN). The MDS analysis showed that the level of flying expericnce can be predicted from the pilot's
conceptual structure, The GWN analvus led to the identification of specific points of agreement and dmagrevnwnl in
the conceptual organization of novice and expert pilots. Pilots do have measurable cognitive structures for organizing
flight-related information. These struciares are measurably different for individuals with different flight experience.
The techniques employed in the research produce descriptions of conceptual structure that may have applications in 7

1473

FORM
DD an 7 EDITION OF 1 NOV 65 IS OBSOLETE

Unelassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




vonceptual structures,

- ) |
, . "2
g & I
s - : :
: -
]
p
4
. 3
| {
] ]
s 1
: 4
] ‘
: i
.. ’:
|
3 1
‘ P
X .
. !
; 1]
4
3
3

. |
5
:' A
i |
\' ’t
: 3
i \
.V N e
A |
i
! y
a3
]
5
)
3
13
<4
{
[
.
3 |
)
5

t nelassified

SECURITY CLASSIFICATION OF Tui¢ BAGE(Whun Data Enteredd




AFHRL Technical Paper 81.46 June §962

STRUCTURES OF MEMORY
FOR CRITICAL FLIGHT INFORMATION

By ]

g

Roger W. Schvanevelit ]
Timothy E. Goldsmith 3
{

Francis T. Durao
Kenneth Maxwell ;
Hector M, Acosta E

Depariment of Paychalogy
New Mexico Siste Univeralty . i
Las Cruces, New Mexico 88003 P

E Richard ¢, Tucker

(LIS -

+T9th TTW/Tralning Analysis
Holloman AFB, New Mexico 88330

Reviewed by

Thomas M. Longridge

Chief, Training Effectivencss Section
Operations Training Division !
Williame Air Force Base, Arizona 85224 < ' |

RtV T

Submitted for Publication by .

Thomas H. Gray

) /

Chlef, Training Technology Branch '.
Operations Training Diviston 3
Williams Alr Foree Base, Arizona 83224 _ 3
i

T B e I e e I o SR IE Tts 4
&

ey

This paper is published in the fnterest of sclentific and techntoal Information exchange: the basle research :
reported represents an early stage in the development of cognitive structures for fight-related information, ,




SUMMARY

Objective

The objective wan information concerning the organization of pilots’ memories for critical flight related
information and u description of any systematic differences in nieinory structure that weee related to differences in
flying expericnee,

Background/Rationale

Renourch into natural language has suggested that retrieval of information from memory is uffecied by the
orgunisation of memory, Mare rapld and sffective retrieval can result from a more efficient and oconomical worage
siructure. The organiation of informatiun in memory can have a oritical impact on flying performance.
Understanding how eritical information is organived in memory can be extremely useful w training program
dowigners and evalualors as well as instructors and others interested in increasing the effectiveness of the pilot-
wireruft wysiem, Knowledge of how individuals develop sysiems for organining critical information cun be used to
wilor truining systemn to provide studenis the concoptual framowork that will lead 10 optimal learning. It may also
provide a useful welection twol by allowing instructors to determine which Individuals have mastered the
prerequinite concepts for succews in a particular training program,

Approach

Two sets of slimulus mat:rials displayed on the console of a Terak 8510/A microcomputer were presonted \o
four groups of officers: Air National Guard pilots (GPs), Fighter Lead-in Instructor pilots (IPs). recent
Undergraduate Pilot Troimng (UPT) graduutes, and Instructor Weapons Systom Officers (WSOs). Three stutistical
ischniquon (hisrarchical cluster analysis, multi-dimensional scaling (MDS) and general weighted network wers
used (o analyso the data and describe the cognitive structure of the groups studled.

Specifics

Subjects were nine A-7 GPa from the Colorado Air National Guard, seven Fighter Lead-in 1Py, four Fighter
Lead-in Inutructor WSO, and 17 recent UPT Graduates, The GPr each had in excess of 2000 hours flying time.
The IPs had 1200=4900 hours, af the UPT gruduates had about 200 hours. Although the GPs and 1Px had
roughly similar amounts of flying time, their experionce differed in that the GPs had linle insiructor experience
while the 1Ps hiad relatively less operational experience. The WSOs had 800=3000 hours,

Two conceptual sets wore invostigated. One, the low-angle sirafe, wan relaiod to only a vingle maneuver, The
othee wel dealt with a cluss of maneuvers: the split-plane maneuvers, The stimulus sets were gene:ated by the
experimontors working with senjor 1Ps at Holloman AFB. Populations of flight related termy were assemnbled
through interviews with IPx at Holloman AFB. These were condensed 1o one se! of 30 stimulus items for split-plane
and 30 for sirafe,

Subjocis performed a solf-paced rating taek in which all pair-wise combinations of the iterie in each set were
raled for similarity, Similarity ratings were treatod an distences in conceplual space. In addition, the UPs gave a
rating of thuir familinrity with the terms, This was done 1o ensure that the UPT graduates had al least a minimal
degroe of familinrlty with the terms.

Analynes showed the imore experianced pilots to have conceptual structuren that were betier developed. more
nophisticatod, and more sconomical than the UPT graduates. The WSOs were also found 1o have concoptual
sructures which diffored from those of the pilots,

A patiern recognition algorithm was applied 10 the MDS solutions and to the raw rating data to see if the
groupy could be distinguished on the basin of their concepiual structures, This program searched for a pattern or
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pratotype which characterined the conceptual structure of members of a group. The groups were found 1o have
different concoptual structures, with the more experienced individuals showing u sligiuly greater tendency to
vlusier about the group prolotype, while the recent UPT graduates tended to be more diverse,

Conclusions/Recommendatons

1. Pilots do have measurable cognitive structures for remembering and recalling flight related information.

2, Cognitive structures show meawurable differences an a function of flying experience, Experionced pilots
exhibit moro officient and economical organisation of flight related information than do lesws experienred pilois.

The WSO» showed a memory siructure that differed from that of the pilots.

3. The approach used In the presont ressarch can provide s useful 100l for looking at differencon in
linlividuals' undormanding of flying tusks. Such a tool may have application bath for asiessing ingdividual
differonces in the development of concoptual understanding during learning and for lonkivg a' 1h. - *fevtiveness of
training programs in conveying critical flight related concepls to students. '
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prototype which characterized the conceplual slruclure of members of a group. The groups were found to have
different conceptual structures, with the more experlenccd individuals showing a slightly greater tendency 1o
clusier about the group protoiype, while the iccent. UPT graduates tended to be more diverse.

_Coucliisions/Recommendations
1. Pilots do have measurable cognitive structures for remembering and recalling flight related information.
2. .Cognitive structures show measurable differences as a function of flying experience. Experienced pilots

exhibit more efficient and economical organization of. flight related information than do less experienced pilots.
The WSOs showed a memory structure that differed from lhal of the pilols.

3. The approac h used in the presonl ‘research can provlde a useful tool for looking at differences in
individuals® undcmlandmg of flying tasks. Such a tool may have application both for assessing individual
differences in the development of conceptual understanding during learning and for looking at the effectiveness of
training programs in conveying critical flight related concepts to students.
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INTRODUCTION

In the past decade, experimental psychologists have generated a
considerable bhody of theory and data concerning the organization and
retrieval of knowledge in human memory. This research area {which has
come to be known as semantic memory) has concentrated largely on the
study of natural categoriea and their members (e.g., birds, minerals,
geological formations), One of the first theoretical proposals in the
area was suggested by Collina and Quillian (1969) following the lead
developed by Quillian (1969) in the torm of an intelligent, question-
answering computer system.

Two important structural principles were cmbodied in the theoret-
ical analysis offered by Collins and Quillian: hierarchical organiza-
tion and cognitive wconomy. The hierarchical principle refers to the
proposal that concepts are stored in memory as nodes in a network with
each node having labeled links to other nodes that represent super-
ordinate concepts. For example, the node representing the oconcept
"robin" would have a particular kind of link (ISA) to the node
representing the oconcept "bird." The hierarohical acheme reguires
that each ooncept only be oconnected to its immediate superordinate and
not to more general concepts (e.g., robin is directly connected ta
bird but not to animal). The hierarchy alaoc provides a basis for
inferences about faots not learned direatly,. If the struoture
contains the facts that "an A is a B" and "a B is a C", then it can be
inferred that "an A is a C,"

The principle of cognitive economy refers to the way in which
properties of oconcepts are represented in the memory system, In
particular, properties are stored at the higheat posaible level of the
hierarehy. This means that properties pertaining to all members of a
particular catesgory need to be atored only onae with a link to the
node representing the category, For example, the proparty "“has winga"
would be stored with the conoept bird rather than with each particular
type of bird., Thus there is an economy of storage. Both principles
are illustrated in the network structure shown in Figure 1,

Collins and Quillian (1969, 1970) presented evidence favoring the
hisrarchical theory of human memory atructure., They showed that
people were faster in verifying true asntences relating concepta near
in the hierarchy (e.g., A robin ia a bird.) ocompared to sentences
relating mors distant concepts (e.g., A robin is an animal.,). Simiiar
results ware found for sentences asserting property relations. Thoae
sentences were also verified more slowly when the noun and the
property ware further apart in the hierarchy.
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Subsequent research has led to some important qualifications of
the original theory proposed by Collins and Quillian. Conrad (1972)
showed that some of the original support for the idea of cognitive
economy was due to a confounding of associative strength between nouns
and properties. In particular, properties which were near to the
founs in the hierarchy tended to occur with those nouns more frequent-
ly in the language. When associative strength was controlled, there
was no evidence of a hierarchical distance effect. Also, the assump-
tion of hierarchical organization has met some difficulties, In
particular, Rips, Shoben, and Smith (1973) have shown that distance in
a logical hlerarchy does not always predioct response time, For
example, people verify the sentence, "A dog is an animal" faster than
the sentence, "A dog is a mammal." Smith, Shoben, and Rips (197T4)
discuss some of the problems associated with the hierarchy model, and
they propose an alternative model using semantic features as the basic
unit of analysis, Collins and Loftus (1975) present a defense of the
hierarchy model. They also suggest extensions to the model which help
to ocompensate for some of its failures.

There have been several other proposals concerning menory strucw-
tures 1in addition to the hierarchical structure proposed by Collina
and Quillian. We have already mentioned the featural analysis pro-
posed by Smith et al. Others have proposed that a multidimensional
spatial representation captures much of the organization of some
2onceptual domains. Shepard (1963) and Kruskal (1977) have investi-
gated the applicability of multidimensional spatial representations
for a number of oconceptual domains with some encouraging results, It
can be difficult to discover the identity of the underlying dimensions
which limits the value of the analysis in some cases., However, multi-
dimensional scaling (MDS) does provide a metric (distance in multi-
dimensional space) which can be valuable, The preasent project has
investigated memory structure using the spatial methods developed by
Shepard and Kruskal.

There have also been proposals that constitute generalizations of
the hierarchical model proposed by Collins and Quillian., One such
model, proposed by Collins and Loftus (1975), assumes that concepts
are organized as nodes in a network but the organization of the
network is not necessarily hierarchical. Retrieving information from
such a network requires the Mactivation" of particular ncdes.

A powerful context mechanism in models of memory structure 1is
termed "“spreading activation" (Collins & Quillian, 1969; Collins &
Loftus, 1975; Meyer & Schvaneveldt, 1971, 1976; Schvaneveldt & Mever,
1973; Schvaneveldt, Durao, & Mukherji, 1982). According to spreading
activation theory, the activation of a node in the network leads to a
apread of activation to other, nearby, nodes. Because of the organ-
ization of the network, the neardby nodes are semantically related,
Thus, spreading activation makes related concepts more readily access-
ible once a particular concept has been activated.
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While much of the theory concerning structure and process in
semantic memory has been based on network structures, there have besn
no empirical methods available to generate networks from data. One
major accomplishment of the present project has been the development
of such a method. The general weighted network (GWN) algorithm uses
the same data aas other methods. Thus, the various structural repre-
sentations can be compared using the same data sets.

Development of Conceptual Structures

One approach to the validation of oconceptual structures involves
demonstrating an orderly development of the structures in atudent
pilots as they gain more experience, The structures derived from the
student data will be compared with those derived from inatructors to
identify aspeots of the conceptual atructure which undergo marked
changes with training and aspects that remain relatively atable,

During the past year, we have investigated the development of
spatial representations and of networks of ooncepts. Of interest is
the extent to which students can be distinguished from instructors on
the basis of their conceptual structures, We have alsc attempted to
identify specific concepts and relations between concepts which
distinguish instructors from students,

In summary, the present investigation employs several methods
that produce structural desoriptions for concepts from split-plane
maneuvers (Table 1) and from the low-angle strafe (Table 2), We have
derived multidimensional spatial representations, cluster analyses
(Johnson, 1967), and network representations for these maneuvers,
Multidimensional spatial representations show the location of each
concept in a multidimensional paychological space where the Euclidean
distance between aoncepts represents psychologioal proximity, Cluster
analyses produce a serles of groupings of concepts, reflecting under-
lying psychologiocal categories of concepts. Cluster analyses impose a
hierarchical constraint on the groupings such that smaller groups form
a subset of larger groups., In a network representation, each concept
occurs as a node in a network, and pasychological distance is repre-
sented by the distance betwaen nodes. Network representations can
reveal several different kinds of organizations including hierarchies,
cycles, and chains of concepts. The validity of these represertations
is nssesased by various oriteria, including consistency within and
between individuals, the development of the representations with

training and experience, and performance in speeded identification
tasks.
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CENERATION OF STIMULUS MATERIALS

A review of training and technical order publications related to
tactical flight operations and tactical aircraft provided a potential
set of stimulus itema. One member of the research team was familiar
with tactical flight operations as an Air Force navigator, and he was
responsible for the generation of preliminary stimulus sets related to
critical flight information and airceraft systems.

Early in this phase of researoh, a rocent AFHRL teohnical report
came to our attention. The report (Meyer, Laveson, Pape, & Edwards,
1978) included the identification and detalled task analyses of
selected basic tactical flight maneuvers, Of particular interest wore
the following:

1. The breakdown of tactioal operationa into two practical oate-
gorles, air-to-air and mir-to=-ground.

2, Results of analyses which identified "highly representative"
maneuvers from each of the above castegories.

3. The use of a scenaric as a means of colleoting data from
experienced airorew members.

Based on the Meyer et al. report, two representative maneuvers
were selected for further investigation. The two maneuvers, low yo Yo
and low-angle strafe, representing air-to-air and air-to-ground
categories, ‘respeqtively, together with a general liast of tactical
aireraft systems, were selected for furtiaer stimulus generation and
validation efforts,

Interviews ware conducted with four instructor pilots from
Holloman AFB., The interviews were conducted informally and involved
examination of general concepts related to air-to-air versus air-to-
ground operations depending on the specialties declared by the inter-
viewees. Conceptual units, wordas and phrases, were then compiled into
preliminary stimulus lists, Detailed review of the Meyer et al. task
analyses provided additional atimulus items and a basis for elimin-
ating items not direotly related to the target maneuvers aselected for
further atudy.

It became apparent that within each selected maneuver, certain
items on the list could be considered assumptions necessary to limit
the scenaric to a particular maneuver. Certain others were essential
or central to the maneuver, and, still others, to varying degrees,
were only "related" to the maneuver 1in a more abstract sense. Accord-
ingly, the preliminary lista were broken down into three subsets based
on best avallable information., These lists, together with an outline
of aircraft systems, were then ready for validation,
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The validation process agonaisted of a series of interviews with
individual tactical fighter pilots on a series of visits to Holloman
AFB. The purpcses of the project were explained to each pilot who was
then aaked to review a list of concepts, The resulting additlons,
deletiona, and shifts (e.g. from "related"” to "esssntial" subsets)
were iteratively incorporated in aucceeding interviews. The 10 inter-
views conducted in this phase resulted in the following:

1. The low yo yo scenario was expanded to include all primary
split-plane maneuvers. Pilot experts made it clear that, even with
multiple scenario-related reatrictions, a real world situation ocould
precipitate any combination of split-plane manesuvers and no single set
of restriotions would evolve into a low yo yo maneuver exolusively,
Since many of the eassential oconcepts established in the 1list were
common to all split-plane mansuvers, only minor expansion of the
stimulua set was required,

2. The low angle strafe mansuver was kept limited in scope and

could be effectively restrioted to the specified maneuver given few
sgenario-related assumptions,

3. The aircraft syatems liat was trimmed considerably. Pilots
indicated that, while all represented subsystems nould be considered
oritical in some sense, knowledge about several aircraft systema only
became oritical when spe¢ific malfunctions occurred in flight.

4, The "basic concepts" subset of each maneuver waa refined to

include 30 items consistent with practical experimental manipulation
in the next phases cof the project.

5. The "assumptiona" subset of eaoh list was restriocted to less
than 10 items to provide a manageable scenarlio description during the
next phases of data collection.

The resulting lists of stimulus items are shown in Tables 1, 2,
and 3.
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Table 1. SCENARIO: SPLIT-PLANE MANEUVERS

Assumptions

OFFENSIVE

AGGRESSIVE

SINGLE BANDIT KILL

COMMIT

ENGAGED

TALLY HO
EQUAL OR SIMILAR AIRCRAFT
IR MISSILE PARAMETERS

DEFENSIVE TURN (TARGET DENIES MISSILE)

Basioc Concepts

LOW YO YO
LAG ROLL
GUNS

G LOADING

6 0'cLocK
SWITCHOLOQY
HEAT

3-9 LINE

LAG PURSUIT
ASPECT ANGLE

THREAT

JOKER

HIGH PK
SHOOTER

RTB

MAX TURN
NOSE COUNTER
UNDER PULL
CLOUDS

HIGH YO YO
BARREL ROLL
AIRSPEED
CUTOFF

SMASH
ACCELERATION
SNAPSHOT
EXTENSION
LIFT VECTOR
PURE PURSUIT

Other Related Concepts

DISENGAGE
SADDLED-UP
BURIED NOSE
LOAD

EQQ

TRAPPED NOSE
KNOCK-IT-OFF
SEPARATE

QUARTER PLANE
OVERTAKE

ANGLE OFF

RELATIVE ENERGY
POWER SETTING

RADIAL G

VERTICAL MANEUVERING
WEAPONS PARAMETERS
CORNER VELOCITY

LEAD PURSVIT

BINGO

LOW PK

REVERSAL

PADLOCK

OP TURN

LINE OF SIGHT RATE
OVER PULL

SUN




Table 2. SCENARIO: LOW ANGLE STRAFE

Assumptiona

CONTROLLED RANGE PANEL/TARGET TARGET ACQUISITION
CLEARED SWITCHOLOGY
Basic Concepts ?
DRIFT AIM OFF POINT DIVE ANGLE
GLIDE PATH FOUL LINE CLOSURE
AIRSPEED RUN-IN LINE ALTITUDE
BANK PIPPER FIXATION  WALKING
TRIGCER TRACKING PULL UP }
RICOCHET YAW FINAL
BURST RECOVERY BUNT
STABILIZE TRIM FOUL {
RANGE PIPPER PLACEMENT FIRE ;
BULLET IMPACT GUNS AIM POINT 3
Other Related Concepts
RETICLE CROSSWIND LEG ROLL IN
ANGLE OF ATTACK  MIL CRANKING DOWNWIND LEG
BASE LEG WIRE PRESS ;
SIGHT PICTURE TRACER SPACING !
WINDS REJOIN BEARING j
{ AZIMUTH LAZY PULL TOWER
; DOWN-THE=-CHUTE DISPERSION COFFIN CORNER
¥ DOUBLE BURST PENDULUM EFFECT EJECTION
: ROLLING PULL LONG BURST
1
i
J
wla




e

Table 3. ESSENTIAL AIRCRAFT TERMS

FLIOHT=-CONTROL SYSTEM
PITCH DAMPER SWITCH

ADI

CAS/MACH

RUDDER TRIM KNOB
THROTTLES

FUEL-FLOW INDICATORS

COMM RADIO
RADAR MISSILE
QUN COMPUTER
HUD

EJECTION SYSTEM

STICK

FLIQHT=-TRIM SWITCH
ALTIMETER

RUDDER PEDALS

YAW DAMPER SWITCH
FUEL-QUANTITY INDICATORS
NAVIGATION SYSTEM
FIRE-CONTROL SYSTEM
MISSILE COMPUTER
OPS CHECKS

CANOPY

UHF
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SIMILARITY-RELATEDNESS RATINGS
Method

Most scaling procedures for producing structural desaeriptions of
a set of concepts require some measure of psychological distance
between the concepts, Accordingly, we developed a similarity or
relatedness rating procedure which provided measures of similarity
between the members of a&all posasible pairs of the basic concepta from
the two selected scenarios (see Tables 1 and 2).

A program was developed for the TERAK miorceomputer to colleot
the rating data. The intent was to produce a program that would
essentially allow subjects to perform the task without outaide
asaistance, Since teats were to be conducted during normal duty
hours, the aim was to establish a method for ocolleating data that
would impinge on subjects' time as little as possidble, Since the
TERAK could be continually available at Holloman AFB, subjects were
able to run through our programs whenever they had a few minutes of
free time, The TERAK was programmed to automatically start the
program whenever it was turned on. Posters were prepared with
detalled inatruotions about starting the TERAK.

Once started, the "FRA: presented Irnstructlions for the task on
its video display. The .i-.tructiona deacribed the nature of similar-
ity or relatedness ratings and gave the detaila on entering the
ratings into the ocomputer. A nscenario was desaribed to provide a
context for rating the terms, and the complnte set of terma to be
rated was shown to allow subjects to establish asome oriteria for
rating the pairs of concepts. The ratinz task {tself oconsisted of
presenting all poasible pairs of the 30 basic concepta from one of the
sets of terms, Thus subjeots rated the similarity of U435 pairs of
terms during the session. For each pair of terms, the TERAK diasplayed
the pair of terms to be rated, a rating scale with the numbers 0
through 9, and a bar marker to indicate the rating. Subjects entered
their rating by pressing a number key on the TERAK keyboard. The bar
marker in the display was moved to the position corresponding to the
number entered by the subject to indicate the rating given, Subjeots
oould change the rating by presaing another number key, and the bar
marker would move to the position corresponding to the new number,
When satiasfied with the rating, the subject pressed the SPACE BAR on
the keyboard, and the display changed to show the next pair of ltems
and to reset the bar marker to the bottom of the scale, This pro-
cedure was followed until all 435 pairs had beun presented. The order
of the pairs was independently randomized for each subjeoct, A rating
seasion required from 30 to 45 minutes to complete, and the TERAK then
presented a debriefing to the subject explaining the purpose of the
research.

Table 4 summarizes the subject groups that were tested with the
rating task. Table 5 shows the flying time for each subject.
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Table 4. Summary of Subjeot Groups for the Rating Task

Group n Desoription Looation j
Split-plane Maneuvers !

IP 7 Instructor Pilots Holloman AFB

GP 9 Air National Guard Pilota Buakley ANGB
UP 17 Undergraduate Pilots (UPTs) Williama AFB ]
IN 4 Instructor Weapons Systems Officers Holloman & Williams '
Low Angle Strafe Maneuver !
3

IP 6 Instructor Pilots Holloman AFB
UP 16 Undergraduate Pilots (UPTs) Williams AFB )

IN 7 Instructor Weapons Systems Officers Holloman & Williams

«ll=




Table 5. Hours of Flying Time for Each Subject

Split-Plane Maneuvers Low Angle Strafe

| Sub jeat J
’ Number IP(I) GP(G) UP(U)  IW(W) IP(I) UP(U)  IW(W) ;
| 1 2850 3221 182 800 2850 200 800 i
; 2 4300 3500 200 950 4300 105 970 :
[ 3 3300 2100 105 725 1850 200 1500
f y 2300 21000 200 3000 1400 188 1100
: 5 1230 3850 188 4400 175 2100
! 6 1600 10650 175 2600 200 72%
' 7 4400 4000 200 180 3000
8 4000 180 206
9 2256 206 250
10 250 200
] 1" 200 196
3 12 196 300
’ 13 300 175
3 14 175 173
i 15 173 200
c 16 200 275
3 17 275
: Note. IP = Instructor Pilots
GP - Air National GQuard Pilots
UP = Undergraduate Pilots (UPTs)
IW « Inatructor Weapons Systems Officera
The letters shown in parentheses next to the group labels

are used to designate partioular individuals in the group,
8.8+, I1 represents the first IP listed.




The portability of the research apparatus permitted collection of
data at several geographically separated locations by different
researchers, National Guard pilots were tested at the Buckley unit
of the Air National Guard. Instructor pilots and weapons systems
officers were tested at Holloman AFB. Undergraduate Pilot Training
subjects and some weapons systems officers were tested at Williams
AFB,

The obtained similarity measures were tranaformed into measuresn
of psychological distance by subtracting the ratinga from the maximum
possible rating. The resulting numbers reflect distance with the
larger numbers representing greater payohological distance between
concepta.

The rating task provided the data base for much of the work
desoribed in thia report. In particular, the ratings were umed to
svaluate consistency within and between individuals and within and
between groups. The ratings were mlso used to produce multidj-
mensional scaling solutions, hierarohiocsl clusters, networks, and
olassification algorithms, The details for emch structural analysis
are presanted in the appropriate seotions.

Since some of the subjeocts tested were in UPT training, it was
desireable to determine how familiar they were with the concepts from
the two lists, Aococordingly, the UPT subjects rated their familiarity
with the terms on a three point ascale. A rating of 1 indicated that
they had no familiarity at all with the ooncept. A rating of ?
indioated that they were familiar with the term but did not use it in
flying. A rating of 3 indicated that tho term was used in flying.,
Summaries of the familiarity rating data are shown in Tables 6 and 7.
Table 6 shows the familiarity of each of the concepts to the group of
UPTs an a whole. Table 7 shows the familiarity indicated by each of
the UPTa for the set of concepts as a whole,

As can be seen from the tables, the UPTa show a reasonable degree
of fumiliarity with the oconcepts, Overall, 65% of the responses
indicate at least aome familiarity with the split-plane concepts, and
73% of the responaes indicate at least some familiarity with the low-
angle strafe ooncepts, Obviously, students are not as familiar with
the concepts as instructors (who selected the ooncapts to begln
with). Thers are a few concepts which are not very familiar, but
overall the students appear to know, or at least know zbout, most of
the oconcepts. Also, the late- analyses suggest that there are
systematic differences between UPTs and other groups which are more
likely based on systematic misunderatanding of the concepts by the
UPTs rather than a lack of familiarity. The faot that some of the
analyses show differences between Alr National Guard Pilots and
Instructor Pilots suggests that the ability tc disoriminate between
groups is not aolely based on a lack of familiarity in one of the
groups.
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Table 6.

Split-Plane Maneuvers

Familiarity of UPTs with Individual Concepts

Low-Angle Strafe

Familiarity Rating Familiarity Rating
Concept 1 2 3 Concept 1 2 3
LOW YO YO 10 6 0 DRIFT 0 6 9
HIGH YO YO 8 8 0 AIM OFF POINT 12 ? 1 i
QUARTER PLANE 14 2 0 DIVE ANGLE 1 9 5 :
LAG ROLL 13 3 0 GLIDE PATH 0 3 12 1
BARREL ROLL 0 1 15 FOUL LINE 1 1 0 :
: OVERTAKE 0 0 16 CLOSURE 0 5 10 t
; GUNS 1 14 1 AIRSPEED 0 2 13 :
; AIRSPEED 0 0 16 RUN-IN-LINE 14 1 0
; ANGLE OFF 4 8 4 ALTITUDE 0 1 1 .
* G LOADING 0 1 15 BANK 0 1 14 i
& CUTOFF 0 0 16 PIPPER FIXATION 7 8 0 é
! RELATIVE ENEROY O Y 12 WALKING 12 3 0 ,
: 6 0'CLOCK 0 3 13 TRIQGER 2 13 0
i POWER SETTING 0 0 16 TRACKING 1 10 u
t SWITCHOLOQY T 85y PULL-UP 3 5 7
! ACCELERATION 0 1 15 RICOCHET 6 9 0 _
y RADIAL @ 12 3 1 YAW 0 2 13 ;
: SMASH 1 1 14 FINAL 2 Y 9 i
HEAT 13 3 0 BURST 3 12 0 !
SNAPSHOT 3 3 0 RECOVERY \ 8 6 %
VERTICAL MANEUV 0 2 14 BUNT 14 1 0 g
3-9 LINE 12 4 0 STABILIZE 2 6 7 g
WEAPONS PARAMS y 12 0 TRIM 0 1 1 !
CORNER VELOCITY 1 8 7 FOUL 14 1 0 i
\ LIFT VECTOR 0 ] 12 RANGE 1 12 2 ]
' EXTENSION 13 3 0 PIPPER PLACEMENT 6 9 0 i
ASPECT ANGLE 13 3 0 FIRE 1 14 0 ‘
LAG PUPSUIT 10 y 2 BULLET IMPACT 3 12 0 .
PURE PURSUIT 9 5 2 GUNS 1 14 0
LEAD PURSUIT 10 4 2 AIM POINT 1 T 7
Total 168 115 197 121 182 147
Peraent 35 24 41 27 ko 33 :
Note:. Entries in the table are the number of UPTs giving each rating

to each conoept.

1=Totally Unfamiliar

2=-Familiar but not used in flying
3-Used in flying

-1lfa
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Table 7. Familiapity of Individual UPTs with All Concepts

Split-Plane Maneuvers Low-Angle Strafe

----- - " D S VD My Ve By e B P L L R L ol

Familiarity Ratings

UPT 1 2 3 1 2 3
u1 6 10 10U 9 13 8
u2 12 6 12 8 13 9
, u3 12 6 12 19 3 8
} Uy 15 3 1 y 10 16
: us 12 5 13 & 14 10 ]
ue y 1" 15 6 16 8
u? 7 7 16 6 13 M
ua 10 8 12 6 10 U p
U9 13 Y 13 - - - ;
v10 - - - 7 12 N
un 7 13 10 9 10 N
u12 4 10 6 8 11 N
(K] 9 9 12 a 1
AT 15 3 12 1" 8 N {
U1s 1 6 13 5 25 0 k
U6 5 8 17 T 12 1 1
uiT 14 6 10

Note. Entries in the table are the number of
goncepts given each rating by each UPT.
1-Totally Unfamiliar
2-Familiar but not used in flying
J-Used in flying

-15




Resulvs and Discussion

The first step toward establishing the validity of the rating
data raquires determining tie extent to which different subjects agree
about the ratings. Under the assumption that the cognitive structures
underlying the ratings are shared by people with similar experiences,
agreement in the ratings presumably reflects the 3shared structures,
Table 8 shows the correlations between the ratings given by each pair
of instructor pilots. Instructor pllots were chosen for this test
since they presumably have an organization of the concepts which 1is
communicated to the atudents they are training. In other words,
inatructors can be expected to have a reasonably well defined
structure, Ccrrelating the ratings they give to the various pairs of
concepts should reflect the extent to whieh thevy share a common
structure, as well as the extent to which the ratings succeed in
capturing that common structure.

The correlations between members of a pair of individuals average
about .43 (the average of the off-diagonal entries). Given the large
number of palrs on which these correlations are based, they are all
statistically signifiocant (Critical values of r are approximately ,10
for the .06 level of significance and ,13 for the .01 level of
significance). The obtained correlations suggest a moderate amount of
agreement among the instructor pllots 1n the ratings assigned to the
435 pairs of basic concepts in each set of material.

The values on the main diagonals (underlined) in the matricies
in Table 8 show reliability estimates from pilots who were retested
after an interval of 6 to B months, With an interval that long
between thu original test and the retest, the second set of ratings
presumably reflects the individual's cognitive structure rather than
memory for the ratings given on the initial teat., The reliability
coefficients average ubout .62 which indicates that approximately 38%
of the variance in the ratings is stable over time within an indiv-
idual. The average correlation between individuals c¢f ,U43 leads to
the conclusion that agreement between individuals accounts for about
18% of the variance in the ratings. Putting these two fmots together
leads to the conclusion that individuals share about 47% of the
consistent variance in the ratings (18%/38%). These values suggest
that the agreement between individuals i3 not only statistically
significant, but is sufficiently large to be of practical significance
as well. For present purposes, the rating data have sufficient
reliability and the agreement between individuals is sufficiently high
to aliow further struotural analyses of these data.
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Inter-Individual Correlation Matrix on Rating Scores

I1 through 17 are individual instructor pilots

I
I2
I3
Iy
I5
16
I7

I
I2
I3
Iy
15
16

I

«35
U7
U5

.58
43

Table 8

Split-Plane Manuevers

12
.35
4
1
A7

.38
32

13

M7
A
U9
W43
Au2
.'-l3

Iy

M5
A
49
)
43
n"‘

15

M2
H7
JU3
o4
JAu2
0“1

I6

.58
.38
luz
W43
42

.37

Low=Angle Strafe Maneuver

I

49
39
57
.49
A

I2
U9

LU0
«50
42
«39

I3

+39
40
.54
A7
.36
o3

I4

57
.50
W47
.53
.NS

I5

49
42
.36
53
.11
b2

16

M
«39
.31
45
'uz
L)

17

43
32
43
U1
41
37

87
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HIERARCHICAL CLUSTERING

Figures 2 through 5 show the results of a hierarchical clustering
analyais of the basia concepts from the two sets of concepta, Figure
2 8shows the groupings of ooncepts for the split plane maneuvers for
the instructor pilots, and Figure 3 shows the same analysis for the
undergraduate pilots. The clusters found in the data from the split-
plane concepts for both inatructor pillots and undergraduate pilots are
shown in Table 9. In several of the methods used to compare students
and inatructors, there are areas of agreesment and disagireement in the
cor.ceptual structures. For example, instructors and students agree
about the grouping of the concepts GUNS and SNAPSHOT. However,
atudents group HI YO YO with LO YO YO, and the instructors do not make
such a grouping. Perusal of Table 9 will reveal several other
examples,

Similar analysis of the data from the congepts related to the low-
angle strafe are shown in the next two figures., Figure U4 shows the
groupings of the ooncepts for the instructor pllots, and Figure 5
shows the results for the undergraduate pilots.

In general, the hierarchical clustering analysis yields sensible
groupings of the concepts, especially for the instructor pilots.
These results generally oconfirm the validity of the procedures we have
used. The oluster analysis does not readily yield information
permitting more detailed analysis than “he concept clusters
themselves, The multidimensional scaling procedure and the network
analyris have proven to be more useful in pushing the anmlysis of the
differences between students and inastructors to a more detailed
level, Next, we turn to those analyses.
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Table 9, Major Clusters of Split-Plane Concepts

Group ! QOroup 2 Group 3 Qroup U Group 5

Instructor Pilots

LO YO Y0 HI YO YO G LOADING QUNS ANGLE OFF
OVERTAKE QTR PLANE VERT MANEUV SNAPSHOT PURE PURSUIT
AIRSPEED LAG ROLL RADIAL G CUTOFF 6 O'CLOCK
SMASH BARREL ROLL LIFT VECTOR LEAD PUR HEAT
REL ENEROY LAG PURSUIT 3=9 LINE SWITCHOLOGY
PWR SETTING ASPECT ANGL WEAPNS PARMS
ACCEL
CORNER VEL
EXTENSION

Undergraduate Pilots
LO YO YO GUNS SWITCHOLOGY OVERTAKE G LOADING
HI Y0 YO SNAPSHOT PURE PUR CORNER VEL
LIFT VECTOR WEAPNS PARMS AIRSPEED
QTR PLANE 6 0'CLOCK REL ENERGY
ANGLE OFF HEAT SMASH
3-9 LINE PWR SETTING
ASPECT ANQL ACCEL
EXTENSION CUTOFF
LAG PURSUIT LEAD PUR
LAG ROLL VERT MANEUV

BARREL ROLL
RADIAL G




MULTIDIMENSIONAL SCALTNG

Strugtures, The results of two-dimensional scaling solutions are
shown in Figures 6 through 9. Figure 6 shows the spatial layout of
the concepts for IPs for concepts from split-plane maneuvers. Figure
7 shows the layout generated for the undergraduate pilots for the same
set of concepts. The spatial layouts for the low-angle strafe
concepts are shown in Figures 8 and 9 for the inatructor pilots and
the undergraduate pilots, reapectively. In these figures, the
position of the concept i3 what ta being represented. The horizontal
position represents the looation of the concept on one dimension, and
the vertical position represents the location of the oconcept on a
second dimenslon.

Since the figures only represent the two-dimensional soaling
solutions, they do not ocapture the complete structures sinoce more
dimensions are required to represent the total complexity of these
sets of oconcepts, Unfortunately, solutions with more than two
dimensions are diffiocult to represent. However, the two-dimensional
repraesentations in the figures do reveal some interesting aspeots of
the oconoeptual atruotures, Compariny the instructors with the under-
graduates (Figures 6 and 7), for example, roveals some similarities in
the relative locations of the concepts SWITCHOLOGY, HEAT, GUNS, and
WEAPONS PARAMETERS in the two structures, There are clear differences
in the relative locations of other concepts. Studenta have HI YO YO
and LO YO YO located near one another while thess two aoncepts are
muoh further apart in the structure developed from the instruotor
data., We will return to a detalled analysis of the differences
between experienced and inexperienced pllots in some of the later
analyses,

The struotures we used for further analyseas wvere based on five
dimenaions for the split-plane maneuvers and four dimensions for the
low=angle strafe. The dimenslonality of each set was chosen by
plotting the varianoce in the instructor data which is acocounted for by
the variance in the instructor structureas, The point at whioh the
function began to level off was selected as the appropriate dimenaion-
ality for that set of concepts. Intereatingly, this procedure leads
to a more complex structure for the aplit-plane maneuvers than for the
low-angle strafe. Such a difference would be expected on the basis of
the difference in oomplexity for the two mets of oconcepts.

Multidimensional scamling solutions have two properties that are
of considerable intareat. Firat, they provide a dimensional organ-
ization that ocan reveal interesting global structures in the data.
Second, they yleld a metric (distance betwean concepts in multie
dimensional space) which has some useful applications. Next, we turn
to a discussion of these propertiss in the data from the inatructor
pllots.
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tidimensional Scaling solution of Split Plane concepts for !nstructor Pilots.
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Dimensions in Multidimensional Space. Some of the major dimen-
sions have been identified for the spatial laycut of the concepts for
inatructors, The split-plane concepts have two dimensions associated
with temporal factors and one dimension which distinguishes particular
maneuvers, The first temporal dimension identifies the general time
dimension within a scenario leading to aplit-plane maneuvers, In
Figure 6, this dimension is the main horizontal dimension ordered from
left to right, The oconcepts on the extreme left (SWITCHOLOGY, HEAT,
and ANGLE OFF) refer to events or conaiderations that oocur early in
the temporal sequence, Moving to the right, we encounter qoncepts
referring to events and conaiderations ocourring later in the
sequence, The seoond temporal dimenamion repreasnts the ordering of
aonoepts in a standard training sequence whioch instructors and
atudents frequently follow in practicing the maneuvers. This
dimenaion oocurs as the third dimension in the sclution and 1is not
shown in Figure 6. The vertical dimension in Figure 6 has been
identified as a contrast between lead pursuit and lag pursuit with lag

pursuit and the asacoiated maneuvers near the top and lead pursuit and
LOW YO YO near the hottom.

The low angle strafe maneuver also provided a temporal order
dimension as the first dimension in the solution. Again, this
dimension occurs as the firat dimunaien in the solution, and it
reflaots the order in which the conocepts would occur to pllota 1in
exeouting the low angle strafe., Interestingly, this dimension appears
to reflect the psyochological ordering of the concepts rather than the
order in whioch the events occur in physioal time. Apparently, pilots
must consider ssveral factors early in time, before they nactually
ocour, in order to be able to concentrate on critical factors suoch as
aiming and firing. The MDS dimension appears to reflect this order of
consideration. Thia dimension appears as the horizontal dimension in

Figure 8 where the ordering of the concepts in time occurs from right
to left,

These dimension are summarized in Table 10, Apparently the
temporal order dimension is a powerful one in the organization of
these concepts for pilots. This dimension shows up oonsintently.

1e dimensional organization of the concepts is intereating, and it
lends some support to the validity of the anmlytio procedures
underlying the MDS solutions. Howesver, the conclusions drawn so far
are rather general and of limited utility, More fine-grained analynes
of the struaturea are required to lead to oconclusions that may by
usefully applied. The metrio-based analyses will take us a astep iIn
the dirnotion of applicable findinga.
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Table 10. Identity of the Dimensions in Multidimensional Space
Dimension _ Identity Concept Set
1 Temporal Order of Conaideration Split-plane
2 Lead versus Lag Pursuit Split-plane
3 Events in a Training Sequence Split-plane

Temporal Order of Consideration

Low Angle Strafe

P




=

The MDS Metric. Table 11 shows the average correlations on the
split-plane concepts both between people in the same group and between
individuals in different groups. Table 12 showa a similar analysis
for the low-angle strafe concepts. Several aspects of the data in
these two tables are noteworthy.

First note that the least experienced individuals (students)
consistently show lower ocorrelations both within their own group and
with the other groups. Overall the correlations involving students
are about .23 compared to an average for the other groups of about
+ 33, Instructor pilots oconnistently show the most consistency with
members of thelr own group. Thls 1s perhaps not surprising since
instruotors not only know about the execution of the maneuvers, but
they also are required to organize what they know an they can
communiocate it to their students., Overall the correlations suggest
that the more experienced individuals agree more among thamselves than
they agree with the students,

On the other hand, the students do show a reasonable amount of
agreement amnong themselvas. Apparently, whatever it is that they
think about the concepts being rated, they share the same knowledge to
some extent,

Finally, note that the dorrelations based on the distances
derived from the multidimensional scaling are slightly but oonsist-
ently higher than the correlations based on the original ratings.
While this difference is not large, it does suggest that the MDS
distances capture at least as much structural information as do the
original ratings. As ve will see later, the MDS solutions apparently
do contain more useful information. One posaible explanation for this
finding ia that the MDS procedure involveas the simultaneous consid-
eration of all of the ratings to determine the baest relative loccations
for the concepts. The original ratings, however, only require
subjects to consider the concepts two-at-a-time. Apparently, the
forced oconsistenay from MDS results in an increase, rather than a
loss, of information. The pattern-recognition analysis (which
follows) dramatically demonstrates the superiority of the MDS metric
over the original ratings.
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Table 11
Average Correlations Within Groups and Between Groups

Split-Plane Maneuvers

Rating Scores

Group

IP GP UP IW Average

ST T T T

IP .42 .35 .20 .39 34
GP .35 .36 .24 N .32
up .20 .24 .31 ,18 .23
IWw .39 .31 .18 .38 +32

Distances in Multidimensional Space

Group
IP GP UP IW Average
IP .45 .37 .22 .40 +36
P .37 .39 .24 .34 L3 ?
Up .22 .24 .29 .20 2U

IN .40 .34 .20 .38 .33 ‘
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Average Correlations Within Groups and Between Groups

Table 12

Low=Angle Strafe Maneuver

Rating Scores

IP
up
W

Distances in Multidimensional Space

IP
up

IW

Ip
4U

.20
39

Ip
W49
22
43

Group

UP IW Average
.20 ,39 34
.32 .24 25
24,36 «33

Group

UP IW Average
22 .13 «38
.32 .25 26
25 .39 +36
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PATTERN RECOONITION ANALYSIS OF CONCEPTUAL STRUCTURES

Conceptual structures provide relational and organizational
information about the ooncepts of a particular domain, In comparing
structures across groups of individuals 1t is possible to define
qualitative differences between groups. This type of a comparison is
important for delineating how different groups view a particular set
of concepts. It 1s also informative to express differences quantita-
tively, The purpose of this phase of the project 1is to define a
technique for quantitatively evaluating individual and group differ-
ences in oconceptual structures of oritical flight information.

The objeoctive in this phase of the project is the development of
methods for classifying an individual as a member of a particular
group based on the individual's conceptual structure. For instance,
glven somaone's cornceptual structure for the split-plane maneuvers, is
it possible to identify that person as an IP? Yn addition to classif-
ication, the analysis also provides information about the degree to
which each individual is assoociated with each group. The unalysis to
be desoribed applies the principles and techniques of pattern
recognition,

Pattern recognition ia an area of artificial intelligence (AI)
that is generally ooncerned with deciding whether an unknown objeet is
a member of a particular olass of objeots, Al applications often
involve computer identification of visuasl objects, although numerous
other uses exist., The only prerequiaite for the application of
pattern recognition teochniques is the necessity to quantify the
objects to be recognized. This is acoomplished by first identifying a
list of features or attributes that best represent the objects and
then numerically ocoding these features. Such a method allows for
abstract as well as physical objeots to be analyzed. In addition to
categorizing objects as members of a particular class, pattern
recognition principles also supply information about oclass and
individual differences.

Method

Two types of patterns were formed for each individual tested,
One pattern was generated from the conceptual structures derived from
a multidimensional scaling (MDS) analysis. FEach MDS solution yields a
metric formed by taking the distance between each pair of concepts in
a multidimensional space. The MDS pattern was created by viewing the
attributea of the pattern as values of the metric. This allowed the
pattern to preaerve the atruotural properties inherent in the MDS
solution. A second pattern was generated by conaidering the similar-
ity rating given for each pair of concepts as a feature of the
pattern. Since this pattern was simply the individual similarity
ratings, it laocked the structural properties imposed by scaling
techniques. Both methods resulted in patterna with 435 features,
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Before the specific analyses are described, a brief overview of

the theory of pattern recognition will be presented. Nilsson (1965)

provides a general discussion of the principles to be used in the

project. Objects to be categorized onre represented by a list of

feature values in the form of a pattern vector X. The ith aelement of _

the vector X represents the value of the i{th feature. Since feature 1

values are in the form nof real numbers, pattern vectors c¢an be i

& oconsidered as points in a multidimensional space where each dimension

represents an attribute of the otjirct, The zoal 18 to develop
deocision surfaces that will partition the pattern apace into regions

containing only thome points or patterns belonging to a particular q

class of patterns.

: One way of producing decision surfaces is to use linear discrim-
I inant functions to decide olass membership. This approach assumes 1
that a weighted linear combination of the feature values can determine ]
L, how a pattern should be olassified. A 1linear disoriminant function
has the form g(X)zWiX1+W2X2+.,.+WdXd+Wd+1, where Ws:W1,W2,,,.,Wd is n :
veotor of weights. Such a function apecifies the equation of a line {
when ds2, the equation of a pla.e whean dz3 and the equation of a
hyperplane when dd3, Classes that oan be properly separated with 4
linear disoriminant funotionas are known as linearly separable,

=

Two methods for generating linear discriminant functions will be
used, The firat method, known as a minimum-distance olassifier, is
simple to apply but works only under restrioted conditiona, With this
procedure, a prototype point representing the oentral tendency of a
class of patterns is conatructed for each pattern olass, Often the
prototype point of a class is simply the average of the feature values
of all patterna belonging to the class., A minimum-distance classifier
computes the distances between each pattern to be categorized and each
1 prototype point and places the pattern into that class asaociated with
the nearest prototype. In the case of two classes, the decision
surface meparating the patterns is the perpendicular bisector of a
line oonnecting the two prototype pointa. Thils approach works wall
when the patterns of euch class cluster tightly around their
respeative prototype points, and the class olusters are well
separated,

et ST et e

S D

A second approach to pattern classification employs a training
algorithm that alters a linear discriminant function until it correct-
ly olassifies the patterns in a training set. The training procedure
alters the function by successive adjustments te the weight vector W
which in effect changes the orientation and position of the decision
surface, In the case of two linearly aseparable classes, a weight
vector exists that will produce a disoriminant function that returns a
poaitive value for all patterns from the first olass and & negative
value for all patterns from the second clams. During the tralning
procedure, {if the function returns a correct response for a pattern
from the training set, no adjustment is made to the weight vector., T1f
the function returns a nogative response for a training pattern from
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the firat class, the weight vector is corrected by adding a fraction
of the pattern vector that was Iincorrectly claasified to the weight
vector. This produces a new weight vector W'zW + cX, where ¢ {s a
positive number that controls the extent of the adjustment and 1is
known as the correction inocrement. It ¢ iy larpe enough, the new
weight vector will correctly classify the training pattern, If the
disceriminant function incorrectly returns a positive value for a
training pattern from the second clasa, & “racstion of the pattern is
subtracted from the weight vector W'zW - X,

The training procedure conasista of presenting the training
patterns one at a time and adjusting the welght vector when necess-
ary. The patterna may be presented In any order as long as each
pattern is tried, The procedure {a terminated as soon as the weight
vector ocorrectly classifies all patterns in Lhe tLralning set. Several
iterations through the training set mny he ncceasary before a solution
is found. The weight vector may be initlalized t~ any convenient set
of values inoluding random values,

The first analysis conaisted of applying a8 minimum-distance
clasaifier to all paira of groupa for both the split-plane and low-
angle strafe maneuvers, Prototype points for all groups and decision
surfaces for saeparating all pairs of proups were computed. In each
application of the miminum=distance classifler, all menbers of the two
groups were used, This provided Information about both group and
individual differences. The distances from caeh individual to a
decision surface and from each individual to the group prototypes were
computed along with the distances between group prototypes.

The second analysis involved computing a decision surface that
separated a training set oconsisting of a limited number of members
from two groups and then applying the decision surface to the remain-
ing members of the groups. Decislion nurfaces were computed with a
training algorithm if a minimum-distance classiflier did not aeparate
the training sets. Weight veotors were initinlized to the weights
produced by a minimum-distance clasnification of the individuals in
the limited training set. This minimized the number of lterations
needed to produce a solution when the minimum distance olassifier
failed and mlsp kept the final weight vector as close to the minimum-
distance decision surface as possible. The f'irat analysis showed that
the classes cluatered tightly indicating that when the minimum-
distance weights failed to separate the classes, a solution olose to
these weights was likely., A small correction Increment (es,01) was
used to produce minimal change from the minimum-distance weights.

For each pair of groups, a training set of a particular size was
randomly chosen, and a decision surface was computed to separate the
members of the training set into thelir respective classes. In the
case wvwhere a minimum-distance alassifier correotly separated the
members of the tralning sets, the resulting diseriminant function was
then applied to the remaining membera of the two groups. If no
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solution was found with the minimum-distance classifier, the training
algorithm was applied to the subset of selected group members to
generate a decision surface which correctly classified all individuals
in the training set. The resulting discriminant function was then
applied to the individuals who were not included in the training set.
This procedure was repeated 100 times for each training set size. The
trainirg sets consisted of equal numbers of individuals from each
group. The whole procedure was iterated with successively larger
training sets until the size of the smaller group was reached.

A final analysis evaluated group differences on a qualitative
level. Each of the weights in a discriminant function corresponds to
a pair of concepts in the stimulus set. Once a2 discriminant function
that separates two groups is derived, it is possible to identify those
concept pairs that contribute the ‘most to discriminating between
groups. The most discriminating pairs of concepts correspond to the
weights in the weight vector with the greatest absolute values. Large
positive weights are associated with pairs of concepts that the first
group views as more related than the second group, and large negative
- weights are associated with pairs of concepts that the second group
views as more related than the first group. Weight vectors derived
from a minimum-distance classification of the MDS patterns were used
for comparing groups.

Results and Discussion

The major finding was that pattern recognition techniques can be
used to discriminate classes of flying personnel based on their
conceptual structures of critical flight information. Also signif-
icant “was the result that patterns represented by distances in an MDS
solution produced better group separation than patterns. based on
rating scores.

The first analysis showed that a minimum-distance classifier
applied to each pair of groups resulted in well separated groups with
only a few erroneous classifications. Table 13 gives the number of
members from each group who were classified into each of the groups.
Incorrect classifications between two groups indicate that the
decision surface generated for those groups does not accurately
separate all members. Table 13 shows the classifications for both
types of patterns (ratings and MDS) and both sets of stimulus
materials (split-plane maneuvers and the low-angle strafe maneuver).

When the minimum-distance classifier was applied to r‘atfﬁg data,
a2 small number of misclassifications occurred. For the split-plane
maneuvers, all of the misclassifications occurred between IPs and
UPTs. The two IPs who were classified as GPs under the ratings were
on the GP 3ide of the decision surface separating IPs and GPs. This
means that their conceptual structures resembled more closely those of
GPs than IPs. Two IPs were also classified as IWSOs, and we will see
shortly that these are the same two IPs that were classified #s GPs.
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Table 13

Classifications Based on Group Separation

with a Minimum-Distance Classifier

Split-Plane Maneuvers

Ratings Distances in MDS
IP QP INSO UPT  IP QP 1NSO UPT .;
IPs olassified as 3 2 2 o 7T 0 0 0 %
GPs oclassified as 0 9 0 0 0 9 0 0 ;
INSOs olassified as O O 4 O o 0 4 o }
UPTs claasified as 0 4 112 0o o 0 17 |

Low~Angle Strafe

Ratings Distances in MDS
IP IWSO URT Ip  I¥SO UPT .
IPs olassified as 6 0 0 6 0 0 ;
INSOs olasmified as O 6 1 o 7 0 j
UPTs classified as o 3 13 0 0 16 )
|
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These two individuals view the split-plane maneuvers somewhat differ-
ently from the other IPs. Table 13 also shows that four of the UPTs
have conceptual structures that resemble more closely a GP structure

than a UPT structure. An important point is that these misclassi-
fications occur even though the individuals misclassified contributed

to defining their group prototype.

The number of misclassifications occurring between two groups
reflects both the distance between the groups in the pattern space and
also the tightness with which individuals cluster around their respect-
ive prototypes. IPs and UPTs appear to be very distinct classes since
no IPs were classified as UPTs and no UPTs were classified as IPs for
either maneuver. Considering the simplicity of the decisicn surfaces
produced by the minimum-distance approach, the overall results
indicate quite distinct classes of individuals.

Table 13 also provides the, results of the minimum-distance class-
ifier using the patterns from an MDS solution. Here we find perfect
separation of all classes. Apparently the structural information
supplied by the MDS procedure maximizes the differences between
classes. This finding helps to validate the claim that the MDS
technique extracts important structural information from similarity
ratings. Additional support for this claim comes from the higher
correlations found for individuals within classes using MDS distances
in comparison to rating scores (see Tables 11 and 12).

Although the number of misclassifications reflects between-group
similarity, a more direct measure is the distance between group
prototypes. Shorter distances suggest greater similarity between
group conceptual structures. Table 14 shows these distances for all
pairs of groups along with a ranking of the distances. Given the
superior performance of the MDS patterns, the ranking based on the MDS
patterns should be more valid than that of the ratings. Table 14
shows that the most similar classes are IPs and GPs followed closely
by IPs and IWSOs. Thus, it is not surprising that the two IPs who
were misclassified as GPs were also misclassified as IWSOs. IPs and
UPTs are seen to be two of the most dissimilar groups which is also
consistent with the finding that no misclassifications occur between
these two groups. : .

Sin. e each individual is represented as a point in the pattern
space, it is possible to provide distances that reflect how similar
the individual is to each group. Two measures are of particular
interest, the distance from an individual to a decision surface and
from an individual to the group vprototype points. The distance
between an individual and the decision surface separating that
individual's group from another group reflects the degree to which
that individual belongs to the group. Large distances suggest strong
identification with the group. The closer the individual is to the
decision surface the more similar that person is to the other group.
Negative distances indicate that the person i3 on the wrong side of
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Table 14
Distancea Between Qroup Prototypes
for All Pairs of Groups
Split-Plane Maneuvers
Retings Rank Distances in MDS  Rank %
1P-GP 33.36 2 81.30 1 !
| IP-1WS0 38.02 4 82.96 2
' IP=UPT 39.14 5 106,29 5
GP=-IWSO 30.72 1 92.56 U '
OP-UPT .99 3 91.31 3 1
IWSO-UPT 49,41 6 111,96 6
i
?
Low=Angle Strafe !
Ratings  Rank Distanges in MDS  Rank _‘
IP-INSO 25.95 1 76,32 \ %
IP=UPT 38.97 3 120,83 3 o
; I¥S0-UPT 36.10 2 95.87 2 P
|
?
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the decision surface and is therefore misclassified. The distance
between an individual and a class prototype reveals how strongly that
individual represents the average features of that class. The dist-
ances from a point in the pattern space to the decision surface and
from the point L~ its prototype do not necessarily correspond because,
for example, a point on the edge of the pattern space may be close to
the decision surface but far from its prototype.

Tables 15 through 23 give the distances from an individual to
both decision surfaces and group prototypes for all individuals. The
rating patterns for IPs in Table 15 show that I2 and I7 were th= two
IPs who were incorrectly classified as GPs and IWSOs. It is intarest-
ing to note that I7 is in fact a GP. This individual was placed in
the IP class when the only classes available were IPs and IWSCs and

then was never reclassified. It is also informative to examine the .

number of hours of flying time for both I2 and I7 from Table 5 in
comparison to the other IPs. Both have considerably more hours than
do the other IPs. Their flr'ng time is actually much closer to the
GPs' flying time.

An examination of the MDS patterns from Table. 15 shows that
although all IPs were correctly classified, I2 and I7 have the
shortest distances to the decision surface separating IPs and GPs.
Generally, there is good correspondence between distances for the
ratings and the MDS patterns. When disagreement occurs, it must be
attributed to the additional information supplied by MDS. Again, MDS
should provide the clearer picture. By rank ordering the distances
under the GP column, it is possible to order the IPs in terms of their
resemblance to GPs. Similar orderings can be obtained for IPs in
comparison to IWSOs and UPTs. The distances from IPs to group
prototypes under each class can also be ordered. As seen in Table 15,
I3 most closely resembles the prototypical IP on the basis of concept-
ual structures of the split-plane maneuvers. Similar 1nfor'mat10n can
be obtained for the members of the other classes.

The UPTs are particularly interesting since they are currently
undergoing training to develop expertise in flying maneuvers. From the
individual distances for the UPTs in Tables 18 and 19, it is apparent
that some of the UPTs view the split-plane maneuvers more like the
experts than do the other UPTs. For instance, U7 was classified both
as a GP and a IWSO in addition to being the closest UPT to the IP
decision surface. Although no misclassifications occurred with the
MDS patterns the same trends occur. This individual appears to be

approaching the conceptual structure of the experts more quickly than
are the other UPTs.
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Table 15

Separation of 1Ps from Other Groups
Based on a Minimum~Distance Classaifier

Split«Plane Maneuvers
I1 through I7 are individual IPs

Rating Sooren
Diastances from Distances from
Decision Surface Oroup Prototypes
apP IWSO urT IP GP IWS0 UPT
In 25.20 34,28 21,86 43,58 59,84 67.11 60.09
I3 18.18 18.45 26.25 41.30 54,03 55.76 61.33
I4 49,29 56,82 14,40 68.90 89,64 95,23 76.65
15 9,12 9.53 15.99 37.U5 44,51 45,80 51.24 )
I7 ‘13-22 -1006” 8.83 u5|33 3”025 35-29 52.”0 ;
Average from group prototypes: b7.37 56,05 58,29 61,54
i

Distances in Multidimensional Space

‘Distances from Distange) from j
Deoision Surface Group Prototypes 4
f g INSO  uPT bo S 1480 UPT :
I1 34.%52 56.93 52.72 105,71 129.57 143,60 1U9.60
Iz 32.22 25.98 39.83 119,56 139.76 136,40 150,87
I3 44.09 42,61 72,90 101,72 132,35 131.97 160.76 '
4 52.87 54,32 59.18 108,04 142,37 143,82 155,73 f
I5 39.83 30.86 h2.u47 109,18 135,64 130.54 144,74
16 55.05 43.9 59.03 114,96 148.89 143.18 160.51
I7T 25.97 35,76 45,89 111,97 129.46 135.91 149, 1

Average from group prototypes: 110,16 136.86 137.92 153;07

Each row of the table represents one IP. Deoision surfaces
were computed for separating IPs from the three remaining groups.
The distance from each IP to a deoision surface ia shown along
with the distance from eaoch IP to eaoh group prototype, Negative
distances indicate that the individual is on the wrong side of the
decision surface and therefore misclassified.
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Table 16

Separntion of Gl's  from Other Groups
Based on a Mininum-Distance Classifier

Split-Plane Maneuvers
G1 through G9 ure individuai GPa

Rating Soores

Distancea from NDistancea from
Deoision Surface Oroup Prototypes
Ip INsO  UPT Ip OGP INSO  UET
Gl 17.51 T7.39 24,20 49,20  35.3¢ 41,30 55,858
g2 17.68 20,24 10,16 hh,82 48,69 K2.35 7,61
Q4 11,04 26,09 5.U1 53,44 u6,04 61,01 50,29
g5 6.58 13.31 2.10 38,36 32,13 W3,01 3,52
36 135.58 15,86 35.12 67,96 47,38 86,74 70.0%
07 13.87 16.06 24,43 54,69 45,45 85,26 62,59
a8 30,94 25.96 29,69 65,11 Ug,64 61,40 66,52
09 20.40 2.82 26.37 %a, 49 37.33  39.59 58.24

Average from group prototypea: 62,05 40,66 50,60 54,87

Distances in Multidimensional Space

Distances fron Distanoes from
Decision Surface Qroup Prototypes
Ie IW30 upr 1w ap TWS0 upt
G1 29.85 4.75 by ,53 135,06 116,70 140,78 146,69
g2 44,88 b6 . W9 54,97 W5.52 117,81 140,95 150,66
03 24,01 J0.21 57.31 128,40 112,71 134,80 151,87
a4 50.97 55,73 29,34 148,58 117,42 1k5,26 138,736
05 38,91 34.92 33.20 151,24 128,64 181,70 150,47
a6 58,17 65.18 L8,.27 167.95 124,45 166,00 155,89
a7 28.65 43,15 h4,93 132,55 113,63 144,56 05,3
a8 70.97 88.28 43,82 177.94 141,85 190.96 167.70
g9 19.45 17.83 54.50 131.07 118,39 131.50 144,082

Average from group prototypes: 145,37 121,18 151,74 151,73

Fach row of the tabie represents one OGP, Denision surfacas
were oomputed for separating GPa from the thrae remaining groups,
The distance from esach QP to a deoimion surfane {s shown along
with the distance from each OGP to eaoh group prototype. Negative
distances indioate that the individual i3 on the wrong side of the
deoision surface and therefore misolassified,
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Table 17

Separation of IWSOs from Other
Groups Based on a Minimum-Distance Clasaifier

Split-Plane Maneuvers
W1 through W4 are individual IWSOs

Rating Scores

Distances from Distances from
Decision Surface Group Prototypes
b ge. ueT IP GF  INSO  UPT
W1 36.26 17.89 37.30 65.72 51,589 139,52 72.45
w2 30.06 17.24 31.51 60.47 49,31 37.03 66.98
W3  5.65 8.84 10.80 U2,09 u43.43 36,64 49,09
w4 4,08 17.74 19.21 49,73 56,89 46.50 63.73

Average from group prototypes: 54.50 50.31 39.92 63.06

Distances in Multidimensional Space

Distances from Distances from
Decision Surface Group Prototypes
hid gp Ut i3 Gp NSO  UPT
W1 53.90 47,18 63.20 143,22 142,50 107.56 160.38
w2 74,84 73.U47 60,53 167.57 171.07 125.15 170.93
W3 21.36 31.93 43,14 119.50 129,02 103.6%1 142.8"
Wy 15.83 32.55 57.05 119,52 132.98 107.97 156.30

Average from group prototypes: 137.45 143.89 111.07 157.619

Each row of the table represents one IWSO., Decision surfaces
were computed for separating IWSOs from the three remaining groups.
The distance from each IWSO to a decision surface is shown along
with the distance from sach IWSO to each group prototype. Negative
distances indicate that the individual is on the wrong side of the
decision surfane and therefore misclassified.
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Table 18

Separation of UPTs from Other Groups
Dased on a Minimum~Distance Classifier

Split-Plane Maneuvers
U1 through U17 are individual UPTs

Rating Scores

Distances from Distanaes f'rom
Decision Surface Group Prototypes

IP GP INSO 1P GP 1WS0 UPT

i U1 14.95 -0.U45 2.55 66.%1 56,73 59,20 57.04
] U2 17.07 -3.03 7.52 66,44 53,37 61.81 55,48
; U3 1,21 11.70 19,37 ks,58  u5.68  55.80 34,64
V4 19,47 26,11 31.13 56,04 59.96 68.51 40,20

us 25,03 35.90 39,89 66.31 71.82 79.87 49,37

U6 21.72 29.88 36.71 75.16 78,82 87.04 62.84

U7 10037 "u057 ‘0-98 58.09 1”.08 u9066 50063

U8 14,76 8.9? 15.01 52.97 ug, 23 55.98 40.63

@ U9 27.37 36,00  42.89 72,52 76,45 85.76 55,83
) U10 16.28 -0,54 h.99 62.92 51,42 56,37 51.82
( Uil 23,58 37.16 43,73 68.84 78.656 Bu.94 53.79
' uia2 21,06 23.97 28.12 56.58 538,05 65.81 39.40
¢ U13 27.13  28.26  32.67 75.48  75.60 B2.47 59.78
3 U1y 24,64 35.48 39.20 62.25 68.08 76.28 4y,11
E uis  15.21 0.86 9.U6 69.80 61.21 67.95 60.68
: u1e 11.11 16,99 23,14 60.07 63.27 70.73 52.10
U17 31,46 39.46 44,62 91.67 94,51 101.74 77.08

Average from group prototypes: 65.13 63,87 T1.17 52,08

Eaoh row of the table represents one UPT., Deoision surfaces

were computed for separating UPTs from the three remaining g

Lups,

The distance from each UPT to a decision surface is shown along
with the distance from each UPT to each group prototype. Negative
distances indicate that the individual 1s on the wrong aide of the

decision surface and therefore misclassified.
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Separution of UPTs from Other Groups

Table 19

Based on a Minimum-Distance Classifier

Distances in Multidimensional Space

Split-Plare Maneuvers
U1l through U17 are irdividual UPTs

P

Ul 61.23
U2 66,10
; U3 43.82
: U4 62.19
3 US 63.05
U6 138.62
U7 36.98
U8 49.62
U9 57.85
U10 67.86
U1l 64,.6"
U12 43.15
Uu13 57.82
Uil 53.54
uts 50.68
U16 34,55
U117 51,97

oP

57.37
52.62
35,19
55.60
63.00
26.“"
23.21
46.08
56.07
42,93
lu, 46
L7.75
ug, 31
60.08
38.96
21.5?
56.49

Distances from
Decision Surface

1430

61.95
75.00
52.22
63.03
57,49
37.63
24,98
61,96
63.02
60.85
61.10
45.83
52,08
69.74
6l4.92
37.u45
62."3

Average from group prototypes:

i3

181.34
181,13
150,65
189.15
182.09
168.59
165,60
170.1”
164,17
177.25
179.92
171.88
172.08
166,32
169,43
165.15
172.49

172.79

Distances
Group Prototypes

GP

174,20
168,42
151,39
180,86
176.80
158,24
154,27
163.75
157.78
157,56
163.57
170.55
161,68
165.07
158,27
154.59
170.36

163.96

IWS0

183.69
188.55
191,49
180.63
169.23
158.60
179.65
169.60
174.96
179.77
175.02
170.24
178.59
180,20
168.38
180.79

176431

from

upT

140.96
136.96
128.42
150,19
140.55
142,17
139.86
135,64
121,06
130.33
136.51
142.72
131.61
127.59
133.92
141,30
136.77

136.27

Each row of the table represents one UPT.
vare computed for separating UPTa from the three remaining groups.
The distanoe from each UPT to a decision surface is shown along
with the diatance from each UPT to each group prototype.
distances indicate that the individual is on the wrong side of the
declsion surface and therefore miscisssified.

Decision surfaces

Negative
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Table 20

Separation of IPs from Other Groups
Based on a Minimum-Distance Classifier

Low=Angle Strafe
I1 through 16 are individual IPs

Rating Suores

Diastances from Distances from
Decision Surface Group Prototypes .
IS0 UPT 1P IWSO uPT :
b
I 26.30 20,51 43,13 56.92 58,81 4
I2 3.24 14,30 32.23 .75 46,41 ]
I3 20.65 10.73 54,67 63.72 61.84 ;
I 8.41 17,43 28.48 35.32 46.58
I5 1.32 21.32 41,67 b2.49 58,30
: 16 17.62 32.61 56.23 63.85 72.52 ]
f Average from group prototypes: 42.74 49,51 57,41
- .3
Distances in Multidimensional Space

- —

Each row of the table representa ona IP. Decision surfaces
vere computed for separating IPs from the three remaining groups.
The distance from each IP to a deaision asurface is shown along
with the distance from each IP to eaoh group prototype. Negative
distannes indiocate that the individual is on the wrong side of the
; decision surface and therefore misclassified.

Distances from Distances from

Decision Surface Group Prototypes 7

T4SO UPT 1P 1US0 upT ;
: b
! I 54.02 T70.32 103.18 137.U45 166,25 3
. I2 36.05 62,14 106.81 130.04 162,56
| 13 15,82 33.90 119,01 128.75  149.51
| 4 35,29  70.55 97.38  121.04  162.89
f 16 30,45 56.07 119.50 137.63 166.82
% Average from group prototypes: 113,32 136.54 165.75
| z
|
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Table 21

Separation of IWSOs from Other Groups
Based on a Minimum-Distance Classifier

Low=Angle Strafe
W1 through W7 are individual IWSOs

Rating Scores .

~Distances from “Dlstances from
veolision Surface Group Prototypes
P uPT i) NSO UPT
W1 22.16 36.12 60.20 49,74 71.28
w2 15.65 14.42 g, 41 35,36 47.86
W3 9.81 25.51 42,04 35.47 55.68
L] 12.39 17.99 54,68 48,u85 60,38
W5 7.51 ~17.61 75,48 72.85 63.53
wé 7.49 15,64 39.53 34,26 47.99 :
W7 15.81 34,25 53.30 Ly ,95 67.03 - §
Average from group prototypes: 52.95 45,87 59,11 :

Distances in Multidimensional Space !

Distances from Distances from 1
Deocision Surface Group Prototypes i

1 UPT b IWs0  uPT |

W1 27,63 58.49 129,55 112,10 155.23 ‘
W2 56.30 ub 06 145,20 111,75 145,51 b
W3 31,49 68.82 129,03 108.83 159. 11 i
W4 31,98 40.32 139.63 120.89 150,21 |
w6 19,65 43,06 124.96 112.32 145,27 %
N7 30.80 59. 11 132,40 113.27 156,47 1
Average from group prototypes: 142,01 120. 41 156.23 ;

Each row of the table reprasents one IWSO. Decision surfaces
were computed for separating IWSOSs [rom the three remaining groups.
The distance from saoch IWSO to a decision surface is shown along
with the distance from each IWSO to each group prototype. Negative
distanoces indioate that the individual is on the wrong side of the
decision surface and therefore misclassified.

-48-




Table 22

Separation of UPTs from Other Groups
Based on a Minimum-Distance Clasasifier

Low-Angle Strafe
U1 through U16 are individual UPTs

Distances from

Group Prototypes

Rating Soores
Distances from
Decision Surface
L e INSO IP
3 U1 7.36 -1072 51c93
U2 11.60 4,56 49,68
U3 29.15 35.96 65,94
uy 27.22 27.11 67.99
U5 16,95 4,60 82.66
[1].] 7.08 ~l,04 54,49
U7 12.70 2.3 58.80
us 31.54 40.76 77.06
U9 7-28 -2;56 5“0"9
u1o 28.63 4u,02 78.89
un 20.44 22.39 55.11
vi2 11.19 7.93 67.47
u13 18,53 19.68 57.72
U1y 15,22 8,03 69.84
uis 27.89 39,58 73.30
U6 39.01 39.88 91.78
Average from group prototypes: 66.07

IWSO

4.7
43,51
68.36
66.93
76.44
46.13
51.32
80.14
47,09
84,68
55.33
65.21
57.51
65.35
77.83
90.89

63.84

uPT

46,08
39.55
45.57
50.01
Th.24
49,19
49,67
58.99
49.01
63.19
38.00
60.66
43,44
60.75
56.57
73.37

§3I6u

Each row of the table represents one UPT.
were computed for separating UPTs from the three remaining groups.
The distance from each UPT to a deoision surface is shown along
with the diatance from each UPT to emch group prototype.
distances indicate that the individual is on the wrong side of the
decision surface and therefore misclassified.
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Table 23

Separation of UPTs from Other Croups
Based on a Minimum-Distance Classifier

Low-Angle Strafe

U1l through U16 are individual UPTs

Distances in Multidimensional Space

n
ua
u3
vy
u5
ué
u?
ue
v9
U0
Ui
ui2
u13
AL
v15
u16

Distances from

Decision Surface

iP

44,98
61.68
79.67
62.93
58.39
69.89
66.20
68.56
63.69
58.86
67.67
19.66
65.83
49.09
55.38
Th4.16

1480

32.21
h9, 43
66.81
56. ua
37.43
62.82
59.78
53.61
52.99
49,00
55.88
15.18
62.59
K1.74
37.84
54,82

Average from group prototypens:

bi3

179.23
184,30
190.52
194,63
184.78
188.00
193.22
173,44
180.27
168,78
201,38
184,99
169.20
183,86
180.42

~Diatances from
Group Prototypes

IWsS0 UpT

166,14 145,78
169.72 138,07
173.83 130.57
183.83 150,57
165,56 141,54
175.60 135.84
181.99 146,07
165.19 116,25
165.98 130.78
154,67 119,43
187.66 185,57
159.77 150,11
175.07 135.33
158.09 129,48
166.98 142,91
159. 4% 120.9¢C
168.72 136.83

182,64

~50=

Eaoch row of the table represents one UPT,

Decision surfaces
were aomputed for separating UPTa from the three remaining groupa.
The distance from eaoch UPT to a decision surface ia shown along

with the distance from each UPT to each group prototype.
distances indioate that the individual is on the wrong nlde of the
decision surfece and therefore misclassified.

Negative
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As mentioned previously, class separation depends on both the
distance batween group prototypes and the closeneas with which members
cluster around their group prototype. Tables 15 through 23 glve a
measure of class alustering in the form of the average distance from
the class prototype to amch class member. Shorter distances suggest
more homogeneous classes with prenter consistency in the individua)
conoeptual atructures, The average distance from the individual to
their own group prototype is the value underlinad in the tables, Tor
both maneuvers, the IPa cluater most tightly while UPTa are the moat
variable. This jis reascnable considering that IPs follow atandard
procedures for presenting the maneuvers and have probably developed
similar ways of thinking about them. UPTs on the other hand are atill
learning the material and have different views about how theae
conceptsa are related,

All of the classification results reported so far have come from
applying disoriminant funotions to members of classes from which the
diseriminant functions were originally derived. Although this provides
useful information about class and individual differences, it is not a
direct test of the ability of disoriminant functiona to categorize new
membera of known classes. The second analysis involved generating a
disoriminant funotion on the bamis of a limited training set from two
clayses and then using the function to place new and unknown memhers
into one of the two olasses.

The results of the olassifications are given in Tables 24 and 26
for the split-plane maneuvers and Table 26 tor the low-angle strafe
mansuver. The tables give the total number of individuals for which a
classifiocation was attempted, foliowed by the percentage of those
correctly olassified and the probability of randomly classifying at
least this number, Since 100 different randomly ochosen training aeta
were usad for each training set size, the number of olasaificationa
attempted is always 100 times the number of remaining members in the
two classes,

The claasification of unknown members was quite succemsaful, Table
24 shows that with only one member each from the IPs and GPs on whloh
to base a decision surface, 798 out of 1400 remaining IPs and GPa wore
classified correctly. Performance was even batter for MDS patterns
where QU9 of the 1400 individuals were correctly classified. These
results are more impressive if we consider that two of the acven IPs
regemble 0OPs, In general, olassification improves as the distance
between oclasses in the pattern space increasas, With only two memhera
eaoh from the IPs and UPTs, it is poasible to classify correctly the
remaining 20 membars 95 percent of the time. Table 26 shows that the
clasaification was poorest for IPs and IWSOs with the low angle strafe
maneuver, In Table 14 the distanoces between group prototvpes show
that IPs and IWSCs are the oloseat pair of groups for both ratings and
distances in MDS,
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Classification generally improves alao as the size of the traine
ing set inoreases. This is expected since the discriminant funation
is derived from a larger more representative sample. Exceptions
sometimes ocour when a few members in one class strongly resemble
members of the other class. In this case, when the training set size
is small, the chances of using one of the deviant c¢lass memhers to
derive the disoriminant function ia also small, This results in
generally good performance over the 100 triala, But as the training
set slze inoreases, the chancesa of basting the discriminant funotion on
one of the deviant members inoreases. The result is increased
difficulty in olasaifying the remaining members. Related to this is a
faoctor that influences the probability measure, As the number of
olassificationa attempted daclines, higher percentages of correct
oclassifiation are needed to maintain previous probability levels,

Disoriminant funotions based upon the MDS patterns resulted in
better oclassification of unknown membera compared to the rating
patterna. The average percentage of correct alasaifications for the
MDS patterns was signifioantly greater than the average for the
ratings, t(106)%5.,95, p&001. As mentioned previously, this superior
performance can be attributed to the additional structursl information
supplied by MDS.

It 1s important to note that the pattern reaqognition analysis haa
besn performed on a limited number of individuamls. Groups have ranged
from 4 to 17 members. Traditional applications of pattern recognition
often use large numbers of patterns to insure that decision aurfaces
refleot general clusa distinotions. The sucoceas meen in the ourrent
analysis with a limited number of patterns suggests considerable
potential for future applicationa. Decision surfacea based on large
representative groups may prove to be cvan more ef'tective in clasae-
ifying pilots on the basis of conceptual structures,




Table 24

Classification of Groups Members
on the Basis of Limited Training Sets
Split-Plane Maneuvers ‘
;
“Training Ratings “Distances in MDS :
Set Size #Classified %Correct Prob* 3Correct Prob*
IPs  GPs ;
1 1 1400 57 001 68 .001 ;
2 2 1200 67 001 17 001
3 3 1000 67 001 82 .001
y y 800 68 001 84 001
5 5 600 62 001 87 001
6 6 4oo 52 ns a7 ,001 ‘
7 7 200 §1 ns 84 1001
Total 5600 3 1001 9 .00
!
q
Training Ratings Distances in MDS i
Set Size #Classified %Correot Prob* iCorrect Prob# :
1Pa  IWSOs |
1 1 900 53 .05 56 001 ﬁ
2 2 ~ 700 57 ,001 60 001 i
O 500 61 ,001 63 .001 ?
00 1 .001 +001 i
Total 2'336 %‘E ,001 3% ,001
i
]
Training Ratings Distanoces in MDS

Set Size #Classified j$Correct Probt $Correct Piob

IPs UPTs
1 1 2200 65 001 79 ,001
2 2 2000 11 001 95 001
3 3 1800 78 +001 98 001
4 y 1600 83 001 100 .001 f
5 5 1400 89 .001 100 .001
6 6 1200 91 001 100 001
TT 1000 L 2001 100 2001 .
Total 11200 0 ,001 9y 001

¥ Probability of randomly clasaifying at least the number of 1
individuals correctly classified (nssnot significant).




Table 29
Classifioation of Orcips Membara /
cn the Basis of Limiled -aining Sets
Split -Plane Maneuvers
“Yraining Ratings Distances in MDS
Sot %&gs fClassified 3Correot Prob* %2Corragt Probt
s
1 1 1100 58 .001 62 .001
2 2 900 64 .001 T ,001
3 3 700 65 001 76 .01
b 500 1 2001 16 2001
Total 3200 3 001 T0 001
3
Truintng Ratings Diatances in MDS |
Set 31 E #Classified fCorrect Prob* 4Correct Prop# ;
OPI Ts
1 2400 62 001 19 +001 '
2 2 2200 70 001 89 001 .
3 3 2000 T4 001 93 001 3
) ] 1800 76 .001 95 +001 !
5 5 1600 76 001 95 .001 ‘
6 6 1400 76 00 95 001 !
T 7 1200 73 .001 495 001 i
8 8 1000 13 001 96 +001 :
9 9 800 12 1001 94 001 i
Total 1141‘8'6 T2 L4001 92 %.oo !
Trlining Ratings Distances in MDS i
_é;g fClassified 3Correot Prob'* $Correct Prob*
I 30
1 1900 68 001 16 001 .
2 2 1100 81 1001 93 1001 |
3 3 1500 81 001 oy 001 1
y y 1300 8 001 001 |
Total 3&53 ;3 ,001 g% ool :

* Probability of randomly olasaifying at least the number of
individuals ocorrectly olassified (nssnot significant),




Table 26

Claassjifiocation of Groups Members
on the Basis of Limited Training Sets

Low=Angle Strafe

Tralning Ratings Distances in MDS
Set Size #Classified $Correot Prob* $Correot Prob®
IPS IWSOs
) ) 1100 49 na 56 001
2 2 900 W3 na 54 O
3 3 700 i5 na 53 na
4 Yy 500 7 ns 55 .05
2 2 300 Mg na 52 ns
100 ; na ny
Total 3500 %‘6 ns g‘% S007
Training Ratings Distances in MDS
Set gﬁe% #Classified J%Correct Prob* Correct Prob®
IPs s
1 1 2000 59 .001 8y +001
2 2 1800 T2 001 96 001
3 3 1600 73 00 96 .001
b ' 1400 81 001 97 .001
5 5 1200 79 00 97 .001
6 6 1000 80 , 001 2% 2001
Total 9000 3 .00 9 .001
]
Training Ratinga Distances in MDS
Set Size #Clmssified %Correct Prob* $Correct Prob*
IWSOs UPTs :
1 1 2100 58 .001 69 001 g
2 FJ 1900 62 +Q01 88 .001
3 3 1700 65 .001 91 Q01
y y 1500 67 001 92 001
5 5 1300 67 001 93 .00
6 6 1100 60 «001 93 .001
7 7 900 25 , 001 87 1001
Total 10500 2 ,001 87 ,001

® Probability of randomly olassifying at least the number of
individuals oorreotly olasait'ied (naznot significant).
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The final analysis on the qualitative differences between groups
examined the distance between each pair of concepts in a group's
conoeptual struoture. The result was a list of the oconcept pairs that
were most different in the conoeptual structures for two groupa, The
list is separated into concept pairs that one group views as more
related than the other group. Later in this report, a detailed anal-
yasis of IP and UPT conoceptual structures is given based on a general
weighted network. To allow a comparison of the upcoming analysis with
the raesults of the pattern recognition techniques, Table 27 shows

those split-plane concepts that lead to the most disagreement between
IPs and UPTs,

The major goal of this phase of the project has been to demon-
atrate both the feasibility and utility of applying the techniques and
principlea of pattern recognition to concoptual structures of critical
flight information. The general finding is that pattern recognition
techniques appear to be sensitive enough to detect subtle differences
between bLoth groups and individuals., In addition, these differences
often seem to have "realeworld" significance, Many of the findings
may have relevance to selection and training, As discussed later in
this report, a beginning pilot's knowledge of aplit-plane maneuvers
begins as a fairly disorganized set of relations, As the person
undergoes training and gains experience in thease maneuvers the
oconoeptual atructures should begin to evolve into structures that more
glosely rosemble thoae of experienced pilots. The resulta of this
part of the project suggest the posaibility of tapping into this
developmental procesa and olasaifying a person at a particular atage
of conceptual development.

5610
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Table 27

The Most Disoriminable Pairs of Concepts

for Distinguishing IPa from UPIs

Split-Plane Maneuvers

IPs View These Pairs aa More Related Than UPTas

LOW Y0 Y0 - CUTOFF
HIGH YO YO - BARREL ROLL
QUARTER PLANE - RELATIVE ENERGY

QUARTER PLANE - VERTICAL MANEUVERING

GUNS « LEAD PURSUIT
CUTOFF « SNAPSHOT
POWER SETTING - EXTENSION

SWITCHOLOGY - WEAPONS PARAMETERS

RADIAL @ - VERTICAL MANEUVERING
HEAT - WEAPONS PARAM- 'iRS

HIGH YO YO = GQUARTER PLANE
HIGH YO YO -~ RADIAL G
BARREL ROLL = ASPECT ANGLE
GUNS =~ CUTOFF

ANOGLE OFF = 6 O'CLOCK

6 O'CLOCK - HEAT
ACCELEZRATION - EXTENSION
RADIAL G - LIFT VECTOR
SMASH - EXTENSION

SNAPSHOT - LEAD PURSUIT

UPTs View These Pairs as More

Related Than IPs

LOW Y0 Y0 - RIOA YO 1O
AIRSPEED - PURE PURSUIT
ANGLE OFF - 3.9 LINE

CUTOFF - CORNER VELUCITY

6 0'CLOCK - SNAPSHOT

POWER SETTING - LEAD PURSUIT
SMASH - HEAT

HEAT - LEAD PURSULT

3-9 LINE ~ EXTENSION

OVENTARE - PURE PURSUIT
ANGLE OFF - CUTOFF

CUTOFF ~ 6 0'CLOCK

CUTCFF - LAQ PURSUIT

6 0'CLOCK - LEAD PURSUIT
ACCELERATION - LIFT VECTOR
SMASH - PURE PURSUIT
SNAPSHOT - LAQ PURSUTT

LAG PUKSUIT - LEAD PURSUIT
PURE_PURSUIT - LEAD PURSUIT

CORNER VELOGITY - LEAD PURSUIT
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GENERAL WEIGHTED NETWORKS

An understanding of the underlying conceptual structure of criti-
cal flight information can be advanced by determining the global
relationships among the concepts as we have done using conventional
scaling techniques (e.g., MDS). However, representing local structure
(i.e., detailed relationships) among critical flight concepts is
quintessential to a full appreciation of fighter pilots' conceptual.
data bases. Theoretically, a general weighted network can accomplish
this goal. ' ' :

A general weighted network is a configuration in which concepts
are depicted by nodes and relationships are depicted by links
connecting the nodes, The links are assigned a value or weight that
reflects the strength of the relationship between the nodes. The
value reflects Lhe distance from one node to another along that link;
the shorter the link, the closer the nodes. The network is general in
that constraints are not placed on the possible relations that can be
represented. For example, the hierarchical constraint found in
cluster analysis is not placed on general weighted networks. With
this constraint removed, the representation becomes more sensitive to
local relations other than hierarchical ones but hierarchical
relations may still be present (Christofides, 1975; Fillembaum &
Rapaport, 1971).

Networks have formed the basis of research in a number of areas
of cognitive science. Several psychological and artificial intell-
igence models of conceptual structure are based on suoh networks.
Work in graph theory is centrally con-~erned with propertier c¢® general
networks. While important the.retical and formal work nas been
conducted on these structures, no methods have been available to
produce networks from empirically obtained measures -of psychological
distance. We developed a network algorithm which produces general
weighted networks (GWN) to apply to the rating data. Recently we
discovered another algorithm developed by Hutchinson (1081) Here we
will discuss our algorithm, GWN, and its application.

The central problem in constructing a network from psychological
distance data is to determine which links to place in the network.
For N concepts, the possible number of 1links lies between N-1 links
for a minimally connected network (MCN) and (N x (N-1))/2 links for
- all possible connections.

R

N,

CYWV ‘ecides whether to add a link “~ ’"ie evisting network for any
two concepts, say, GUNS and CUTOFF, .n the following way. The empir-
ical distance between the two concepts is compared with the shortest
chain (sequence of 1links) already existing in the network connecting
GUNS and CUTOFF. Such a chain might be GUNS-LEAD PURSUIT-CUTOFF, or
mor> general';, GUNS-X1-X2- . . .- Xn-CUTOFF, where the Xs represent
cn.2ren’ 2 nodes of the chain. GWN assumes that for a person to
decide on the relatedness of GUNS and CUTOFF scarch is directed along
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the network from each concept. The searches will intersect, at some
concept Xi, along the shortest chain connecting the two concepts. The.
distance before this intersection occurs is taken by GWN as the short-
est distance between the concepts. If the empirical distance 1is .
longer than the shortest distance currently in the network, then GWN
does not add a link since the new link would be redundant with the
shortest chain. If the empirical distance is shorter than the
evaluated distance of the shortest current chain, then GWN adds a link
connecting GUNS and CUTOFF because the psychological distance is
smaller than would be allowed by the existing network. By iterating
this procedure starting with the smallest empirical distance and
proceeding with all distances in order of their magnitude, GWN adds
links to the network and can create networks of varying complexity.

MCN: The Skeletal Structure. For any set of N concepts, those
concepts can be formed into a network (more specifically a tree) with
N-1 links. In such a network or tree, each concept is reachable from
every other concept. Each node, not yet connected to the network, is
connected by finding the shortest link between it and ‘an element of
the network. This solution minimizes the average distance from -all
‘concepts Xi to all concepts Xj for N-1. links. The MCN has a special
status in that the MCN 1links will appear, by definition, in all
connected networks regardless of how elaborate. In a sense, the MCN
represents the backbone of the network and may have a special status
in the conceptual representation. The MCN produced by GWN turns out
to be the shortest spanning subtree proposed by Kruskal (1956).

‘ MEN: The Integral Connections. The MEN is the minimal network
that iincludes more links than the simple tree structure of the MCN.
. The MEN allows additional interconnections among concepts that produce
the most efficient connections with a minimal number of links. Unlike
the MCN, the MEN does not have a logical bound on the number of links
that can be found in the network. Also unlike the MCN, cycles can be
introduced into the representation.* Cycles are of particular interest
in that they are chains that begin and terminate on the same node.

We analyzed the psychological distance data from UPTs, IPs, GPs,
and IWSOs for split-plane maneuvers and the low-angle strafe maneuver
using GWN. The resulting networks for IPs and UPTs - appear in Flgures
10 to 16. The nodes in the networks are located on the page according
to the two-dimensional multidimensional scaling solutions for the
IPs. One of the problems of representing the networks is_garranging
the nodes. Using the MDS solution solves that problem and“’;has the
advantage of depicting bhoth dimensional information and network
information in th: same reprasentaticn. The MDS solution for the IPs
is used for ali netsorks to <esplditate comparisons between IP and UPT
networks in the figureg, cvhe NS are represented by solid lines and
the dotted lines . repr'esent the additional 1links added in the MEN
solutions. . _ :
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lines are MCN links_

Figure 14. Minimal Elaborated Network by GWN of Strafe concepts for Instructor Pilots. Sofid
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The network derived from the student data is considerably more
complex than the IP network. The alaborated student network has 51
links compared to U0 for the inatructor network. Apparently, the
instructors have a bett.r organized struocture for these concepts; at
least it is more elegant. Surprisingly, the GP network was even more
complex than the UPT network. Perhaps the necessity of communicating
the oconcepts to students contributes to the aimplicity of the inatruct-
ors' organization,

We will analyze, in depth, the network of split-plane concepts
for the IPs and then will make comparisons across networks. The IP
network was chosen for several reasona: a) The network contains
several theoretical highlights of networka, b) The network is the
reprasentation of an expert and is therefore of ,.cactiocal importance,
o) it is aimilar to the other group of prolessional pilots (i.e. GPa),
d) the IPs have direot communication with the UPTs, and e) the IPa
produced the most elegant atruoture, which will simplify discusasion
consideradbly,

Split Plane Network for Instructor Pilots. We analyzed the
empirical distance data for the 30 SPLIT PLANE concepts uaind CWN.
OWN produced the MCN shown in Figure 10 for the inatructor pilots.
The network is composed of 29 links with an average link length of
10,4 and a standard deviation of 7. The shortest link is between QUNS
and SNAPSHOT (1 unit) and the longest links are LAG ROLL~ASPECT ANGLE
and HEAT-PURE PURSUIT (26 units). A great deal of struoture is
apparent even in the skeletal configuration of the MCN, The MCN for
these data is far from the aimple structures in whioch one ooncept
links to the remaining 29 ooncepts or in whioh each concept links to
two other oconcepts forming a strajght-line chain. Rather there are
several uconcepts that link to multiple aoncepts (QUNS, HEAT, ASPECT
ANCLE, VERTICAL MANEUVERING, ACCELERATION, SMASH, AIRSPEED).

When OWN elaborates the MCN to form the MEN, 11 additional links
are added, making a total of U0 links, with an average link length of
14,5, atandard deviation of 10.5, and maximum link length of 4l unita
(AIRSPEED-PURE PURSUIT). Figure 11 shows the MEN solution with the
MCN 1links aa solid lines and the additional 11 links as dotted linas,
The additional links seem to integrate the overall network by connect-
ing concepts olosely allied with flight to concepts olosely allied
with weapons, Some of thess aoonnections are indirect (e.g., QUARTER
PLANE to LAO PURSUIT) while others are quite direct (e.g., G LOADING
to WEAPONS PARAMETERS)., The three new links from QUARTER PLANE
oertainly help interconnect the overall network and, in addition, make
QUARTER PLANE a ocentral concept in the network., Note also that only
four aooncepts are terminal (i.0., connect to only one other concept):
HI YO Yo, LO YO YO, 6 O'CLOCK, and CORNER VELOCITY.




Another very important form of integration produced by the
additional links of the MEN is the establishment of oaycles, Cyoles
are chains of links through the network that allow & return to the
starting point without baoktracking (i.e., without returning over the
same link). Recall that with the MCN configuration of 29 1links,
oyoles were not possible, The addition of the 11 1links in the MEN
produced nine minimum distance cycles. Cycles can be found for each
nonterminal node in the network. The terminal nodea obviously cannot
be in cycles aince there is only one »ntry point to the concept.

Viewing the nine uycles in Figure 12 gives a better pioture of
the structure present in the MEN., 1In principle there oould be 26
minimum oyocles in the MEN, one ror each non-terminal conaept. Howevar,
only nine unique minimum oyolea ars present in the MEN indiocating that
several concepts share the same cycle. The shorteat oyole is only 20
units long and is used by five concapts as the minimum oyole. The
longest cyele is 127 units long and is the minimum aycle for only ones
concept (i.e., PURE PURSUIT),

Members of the same oyole may have a paychological relationship
among themselves that is not found betwean oonoepts from different
cyclaes, For example, the three shortest cyoles are of particular
intereat, not only beocauss they are the moat compact, but mlso because
each menmber of the oycle uses that cycle as the shortest route through
the network and baock, These aycles appear to form meaningful
organizational unitast

(AIRSPEED=-SMASH~POWER SETTING=EXTENSION-ACCELERATION)
(QUNS-SWITCHOLOQY-HEAT-WEAPONS PARAMETERS)

(QUARTER PLANE-VERTICAL MANEUVERING=-
BARREL ROLL-ASPECT ANGLE-3/9 LINE)

Another means of identifying asubatructures within the MEN is the
formation of aonosptual assemblies, Conceptual assemblies are formed
by finding the smallest number of conocepts that dominate all the other
conocepts in the network. In other words, from thia set of dominating
ooncepts (DCs) all other concepts oan be reached by traversing one
link. Suoh a set is referred to in graph theory as externally
stable, The problem of finding such a set is analogous to determining
the number and locations of, say, army poats to guard cities (nodes)
conneoted by major highways (linka) or hospitals to servioe
neighborhoods connected by streets, Often sevearal such sats satisfy
the requirements of an externally stable set, In forming assemblies,
We placed the additional restriction that the aat be as close aus
possible to internally stable. An internally stable sat im a set of
oonoepts with no shared links. Thus, weo attempted to rind the set of
DCa that had a link with every other concept in the network but with
no links to other DCa.
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The DCs for this network were GUNS, HEAT, QUARTER PLANE, ACCEL-
ERATION, SMASH, CORNER VELOCITY, RADIAL G, CUTOFF, and ASPECT ANGLE.
,Assemblies are composed of the DC and all concepts that it dominates.
For example, the GUNS assembly contains GUNS, SWITCHOLOGY,  WEAPONS
PARAMETERS, SNAPSHOT, and LEAD PURSUIT. Just as cycles par'tit:.on the
'MEN into a small number of comprehensible subnetworks (i.e., nine) so
" do assemblies break down the large amount of data represented in the
network into a smaller number of meaningful units, in this case nine.

The network of split-plane concepts for the instructor pilots
highlights a number of local relationships that are not apparent in
the more traditional scaling techniques that we have used.  The
networks themselves, MCN and MEN, reduce a huge amount of data in the
form of an N x N distance matrix to a much smaller set of data. These
networks can be reduced still further .by isolating minimum cycles ‘or
DC assemblies. An ‘understanding of the local relationships among
concepts or among cycles or assemblies makes it possible to compare
-experienced pilots with those training to become pilots. With other
techniques, say MDS, only gross global comparisons can be made between
the groups. With the network representation, and with the pattern
classifier discussed elsewhere in this report, individual concepts can

be examined and the extent to which the organization is the same for
experienced and novice pilots can be determined. Further, novice
pilots may differ from experienced pilots either because the novices
are missing critical links for a particular concept (underdefined
concepts) or because they have additional organizational links that
the more experienced pilots do not have (overdefined concepts).

A Comparison of Novice and Expert Pilots using GWN. We used the
GWN algorithm to isolate those concepts and relations that distinguish
expert fighter pilots from novices. These concepts and relations fall
into two categories: (a) those that experts have that the novices do
not and (b) those that novices have that experts do not. The under-
graduate pilots served as the novice group, and the instructor and
guard pilots were the experts. e

In the organization of any set of concepts, there are a rumber of
idiosyncratic relations in the network of any individual person or
group of people. In order to avoid these idiosyncracies, the study
focused on the group networks for expert and novice fighter pilots.
We were interested in comparing the network derived from the UPT data
against the representation of critical flight information.

‘Critical flight information was defined as the segmgﬁi‘s of the
. MEN that were shared by both groups of experts,i.e., the links con-
.tained in the MEN of both the IPs and the GPs. If the student network
does not have a link found in both expert networks, the student may be
‘'missing a piece of critical flight information. Similarly, if the.
student has a link that is found neither in the IP network nor in the

GP network, then the student may have a mlsconceptlon about the
relation between the linked concepts.
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Critical flight network and assemblies. GWN found the MEN for
the IPs and GPs. The intersection of these MENs formed the critical
links of the expert pilots. As can be seen in Figure 16, this led to
a disconnected network composed of three connected components and
three concepts that did not have any critical 1links. These three
concepts were connected to the IP and GP networks diff‘erently and thus
do not produce any critical links. These concepts are good examples
of the role of idiosyncratic information in the networks.

For each connected component, the DCs and accompanying assemblies
were identified. Note that there were no critical cycles so a cycle
analysis was not done. Table 28 lists the DCs and accompanying assem-
blies for each connected component. If a DC was also a terminal con-
cept, we included that concept within the larger acssembly for ease of
exposition. The DCs for the critical network were: GUNS, CUTOFF, VERT-
ICAL MANEUVERING, AIRSPEED, RELATIVE ENERGY, LAG ROLL, RADIAL G, 3-9
LINE. The Vertical Maneuvering Connected Component is partitioned
into a Guns Subassembly, Angle Off subassembly, Vertical Maneuvering
subassembly, and an Airspeed subassembly. In the Guns Subassembly,
CUTOFF was also a DC as was RELATIVE ENERGY in the Airspeed Sub-
assembly. The Lag Roll Subassembly forms with LAG ROLL as the center
and RADIAL G and 3-9 LINE as terminal DCs. The Heat Component and
Acceleration Component have only two concepts each and thus are not
‘reducible to subassemblies. There is considerable similarity between
the DCs and assemblies found for the IPs earlier and the critical DCs
and assemblies found in this analysis.

The critical links in the assemblies are underlined. The three
columns next to each link indicate whether the MEN for each of the
three groups of pilots contained that link. For example, within the
Guns Subassembly for the concept LEAD PURSUIT we find three links.
Two of the links are critical and shared by the IPs and GPs (GCUNS and
CUTOFF), and one of the links is noncritical and held by only the
students (OVERTAKE). A perusal of the table shows that some links are
possessed by only one group, some links are shared by UPTs and IPs or
by UPTs and GPs or by IPs and GPs (critical), and some links are
shar'ed by all (critical links held by the students)

£
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Table 28

Assemblies for the Split-Plane Concepts 1
KEY:

The table (which appears on the following several pages) depicta
linkyd oconneoted to ooncepts acoording to OWN solutions for student
pilots, 1instructor pilots, and national guard pilots. Minima)l elah=-
oratad networks weres used for the studonta and guarda, while an elaha
orated network with 51 links was used for the instructora in order to
equate number of direot concept=to-concept links.

In the leftshand column, elements of the network are listad, The
; next column containa the elsmants that are linked to the elements
; listad iy the first column. The X's indicate whioh pilot groups have

that link,

PP PP

i Underlined conaepts and corresponding X's represent oritical
| linka. A oritical link is one that is in the network of beth the
' instructors and guards,

ASSEMBLIES used oritical .iinks and were formed in the following

ways:
3 1) A disoconneuted network was formed from the oritical lianks and _
nodes. .
{ |
3 2) Eaoh oonnected component was labelled by its graph theoretic :

median (or if no relative medimn oould be uniquely determined, one !
was choson), This led to four connected ocomponents (i.e,, VERTICAL i
MANEUVERING, LAG ROLL, HEAT, ACCELERATION) and three independent

oconoepts (i.e., BARREL ROLL, GUVERTAKE, LOW YO YO),

3) The minimal externally stable seta of maximally dominating
concepts (MDC) wure determined for eaoh oconneocted component and the
set that was most internally stable was used to form subassemblies o
the connected components,

=
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(Table 28 continued)

VERTICAL MANEUVERING CONNECTED COMPONENT

GUNS SUBASSEMBLY

UPTs 1

ta
(%]

xh<bd><§

GUNS (MDC) SWITCHOLOGY
SNAPSHOT
VEAPONS PARAMETERS
LEAD PURSUIT
6 0'CLOCK

[><[>¢ix
f><I¢i><i><}o
[ 1
L]

>

SWITCHOLOGY GUNS

HEA

t
¢
¢

A

SNAPSHOT GUNS

(shared by ANGLE OFF

angle off 3-9 LINE

subassembly) BARREL ROLL
ASPECT ANGLE
G LOADING
OVERTAKE

I
[>¢]>¢
¢

T T T TR T R T e e

¢ >

WEAPONS PARAMETERS GUN3

. EXTENSION

b ASPECT ANGLE
{ LAG ROLL

1 ANGLE OF

’ RADIAL G

HEAT

G LOADING

6 O'CLOCK
HEAT ASSEMBLY

> > >

{><

2 D D D D M >C
> ¢ >¢

1>
15 ¢

LEAD PURSUIT GUNS
CUTOFF
OVERTAKE X

Ixcl><
[ES I 3

CUTOFF (MDC) LEAD PURSUIT
3-9 LINE X
ASPECT ANGLE X
OVERTAKE X X
RELATIVE ENERGY
ANGLE OFF
LO YO YO X

[

>
P

>4 >



(Tuble 28 continued)
VERTICAL MANEUVERING SUBASSEMBLY
UPTs IPs GPs
VERTICAL '
MANEUVERING (MDC) HL YO YO X X X §
(+harad by LTFT yFCroR X X X '
' airspeed QUARTER PLANS X X ;
subassembly) ATRSPEED X X _
BARREL ROLL X X ;
RELATIVE ENERGY X i
3-9 LINE X i
; LAG ROLL X :
| LAG ROLL ASSEMBLY X X X
: HI YO YO VERTICAL MANEUVERING X X X ;
: Lo Yo Yo X k
i 3-9 LINE X '
: ASPECT ANGLE X X
g QUARTER PLANE X
: BARREI, ROLL X
A LIFT VECTOR VERTICAL MANEUVERING X X X
; QUARTER PLANE X
G LOADING X X |
RADIAL G X
LAG ROLL ASSEMBLY (Q) X X X
QUARTER PLANE VERTICAL MANEUVERING X X
(shared by ANGLE OFF X X X
1 angle off 3-9 LINE X X \
: subassembly) LIFT VECTOR X :
EXTENSION X 4
ASPECT ANGLE X X Q
LAG PURSUIT X X ]
LO Y2 Y0 X A
HI YO YO X i
RADIAL G X i
6 0'CLOCK X :
LAG ROLL ASSEMBLY (3-9) X X X i
L\ 1
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(Table 28 continued)
UPTs IPs

Q
o
o

AIRSPEED SUBASSEMBLY

AIRSPEED (MDC) SMASH

. (shared by CORNER VELOCITY

l vertical PURE PURSUIT
manesuver VERTICAL MANEUVERING

a subassembly) POWER SETTING

1 EXTENSION

l

|

I>¢19¢I>¢

B b P b

¢ >

OVERTAKE

ACCELERATION

LO Y0 YO
ACCELERATION ASSEMBLY

>
Ioe ¢ 3¢ ><ineln¢isei>elne

15

o<

SMASH AIRSPEED
RELATIVE ENERGY
1 HEAT
J ACCELERATION
3 OVERTAKE
: POWER SETTING
EXTENSION
G LOADING
ACCELEKATION ASSEMBLY

¢l

> eI
1€

>
e siaen =,

foe 3¢ 5¢ ¢ >¢

f>¢

CORNER VELOCITY AIRSPEED
G LOADING

>x¢|><¢
1<
»>iye ¢

PURE PURSUIT AIRSPEED
6 0'CLOCK
HEAT
ACCELERATION
RELATIVE ENERGY
HEAT ASSEMBLY

e AL i &

>
>

I €56 > I>¢

§o<¢
>

e e T Tl T

*OWER SETTINQ AIRSPEED
ACCELERATION X
SMASH
EXTENSION

1<
1<

it

Ia  5¢ >¢

RELATIVE ENERGY SMASH
(MDC) VERTICAL MANEUVERING
LAG PURSULT
LO YO YO
LAG ROLL
RADIAL G
BARKEL ROLL
CUTOFF
PURE PURSUI4 X

~¢ >< i
12¢

> X 26 4
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ANGLE OFF SUBASSEMBLY

ANGLE OFF

(Table 28 continued)

UPTa

QUARTER PLANE X
SNAPSHOT

WEAPONS PARAMETERS X
OVERTAKE X
CUTOFF

3-9 LINE

LAG ROLL

BARREL ROLL

-
Ixix]o
/]

Q
¢ 3¢ D¢ >4 >d>d>::

e
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(Table 28 continued)

LAG ROLL CONNECTED COMPONENT

UPTs I
LAG ROLL (MDC) LAG PURSUIT X

- ASPECT ANGLE

| G LOADING

. RELATIVE ENERGY
BARREL ROLL
3=-9 LINE
WEAPONS PARAMETERS
ANGLE OFF
VERTICAL MANEUVERING
AIRSPEED ASSEMBLY

(R3S Y ke
(o]
>d>d>du:;l

L
>

I>¢ 5
15¢

LAG PURSUIT LAG ROLL

QUARTER PLANE
RELATIVE ENERGY
RADIAL G

: HEAT

f ' BARREL ROLL

6 0'CLOCK

HEAT ASSEMBLY

¢ >¢ ¢
b E

>

I>¢
In¢ >¢< >¢

ASPECT ANGLE LAG ROLL
=9 LINE
HT Y0 Y0
QUARTER PLANE
CUTOFF
WEAPCONS PARAMETERS
BARREL ROLL
LO YO YO
SNAPSHOT
QUNS ASSEMBLY

I>ci>c

5 3¢ ¢
> > »¢ix¢i

SN e e

B2
I
I5¢ >¢ >¢

=

G LOADING LAG ROLL

RADIAL G
‘ CORNER VELOCITY
LIFT VECTOR
ACCELERATION
WEAPONS PARAMETERS
SNAPSHOT j
BARREL ROLL X i
EXTENSION
SMASH
AIRSPEED ASSEMBLY
GUNS ASSEMBLY

¢ »Ix¢
(B b
¢ >¢|o¢ine

o >

>

15¢
[oc]ne ¢ ¢
I>ei>¢
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RADIAL G (MDC)

3.9 LINE (MDC)

- T T T e —

(Table 28 continued)

UPTs

G LOADING

WEAPONS PARAMETERS
LAG PURSUIT

BARREL ROLL

LIFT VECTOR
QUARTER PLANE
RELATIVE ENERCY

VERTICAL ASSEMBLY
YROLE ‘O ASSEVBLY
ASPECT ANGLE

HI YO YO

QUARTER PLANE

LAG ROLL

CUTOFF

SNAPSHOT

VERTICAL MANEUVERING
ANGLE OFF

VERTICAL ASSEMBLY
ANGLE OFF ASSEMBLY
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HEAT

6 0'CLOCK

ACCELERATION

EXTENSION

(Table 28 continued)

HEAT CONNECTED COMPONENT

UPTs

6 0'CLOCK

WEAPONS PARAMETERS X
SMASH X
LAG PURSUIT

PURE PURSUILT

SWITCHOLOGY

HEAT L
PURE PURSULT ‘ %
QUNS X
WEAPONS PARAMETERS

LAG PURSUIT

QUARTER PLANE
VERTICAL/ATRSPEED ASSEMB.

1oe

-
< > > < ><l><;!

1> »¢

ACCELERATION CONNECTED COMPONENT

AT

EXTENSION

SMASH

POWER SETTING

LO Y0 YO

AIRSPEED

G0 LOADING
OVERTAKE

PURE PURSUIT
AIRSPEED ASSEMBLY

€ XX

I

ACCELERATION
QUARTER PLANE
AIRSPEED

WEAPONS PARAMETERS
POWER SETTING
SMASH

0 LOADING
AIRSPEED ASSEMBLY

E

<
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BARREL ROLL

OVERTAKE

LO YO YO

(Table 28 coneluded)

INDEPENDENT CONCEPTS

LAG ROLL

RADIAL G

SNAPSHOT

VERTICAL MANEUVERING
ASPECT ANGLE
ANGLE OFF

G LOADING
RELATIVE ENERQY
LAG PURSUIT

HI YO YO

VERTICAL ASSEMBLY
EAQ ASSEMBLY

AIRSPEED

ANQLE OFF

CUTOFF

LEAD PURSUIT

SMASH

SNAPSHOT

ACCELERATION

QUNS ASSEMBLY (CUTOFF)
ATRSpEED ASSEMBLY

HI Y0 YO

QUARTER PLANE
RELATIVE ENERGY
ACCELERATION

A1RSPEED

ASPECT ANQLE

CUTOFF

AIRSPEED/ACCEL. MACRO,
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Table 28 also reveals connections from concepts to assemblies. To
connect from a concept to an assembly requires only a link from that
concept to any concept in that assembly. For example, WEAPONS PARAM-
ETERS has a critical link to the Heat Assembly. This means that while
IPs and GPs did not agree on the direct link emanating from WEAPONS
PARAMETERS, they did agree that there should be some connection from
WEAPONS PARAMETERS to the assembly of concepts dealing with Heat. In
this specific example, the MEN for IPs had a WEAPONS PARAMETERS to
HEAT link while the GPs had a link between WEAPONS PARAMETERS and 6
O'CLOCK. Since HEAT and 6 O'CLOCK belong to the same assembly, a link
is added to that assembly. This is incidentally a critical link that
the UPTs also have.

Table 28 permits the classification of concepts along two dimen-
sions: underdefinition and overdefinition. Underdefined concepts for
UPTs are those that are missing a large proportion of critiecal links.
Overdefined concepts are those that the UPTs have connected to the
network using links that neither the IPs nor the GPs have in their
networks. We determined the probability of a UPT having a 1link
given that the link was critical as well as the probability of the
UPTs having a link given that neither experienced pilot group had the
link. We then did a median split on each dimension and classified the
concepts as to whether they were high on both dimensions, low on both
dimensions, or high on one and low on the other. This leads to four
~classes of concepts: well defined, over defined, under defined, and
misdefined. These concepts appear in Table 29. The actual links
involved in the classification of these concepts appear in Table 30.

-The ecritical links not held by tne UPTs are these relations found
in the conceptual structure of experienced pilots but not in that of
the students. Some of the structure missing in the student networks
are concept-to-concept links (e.g., VERTICAL MANEUVERING--QUARTER
PLANE) whereas others are concept-to-assembly links (e.g., LAG
PURSUIT--HEAT ASSEMBLY). Recall that if a student is missing a.
critical concept-to-assembly link, the MEN for the UPTs does not
contain a link from that concept to any concept in that assembly. For
some concepts, the UPTs have none of the critical relations: LEAD
PURSUIT, HEAT, and LOW Y0 YO. 1In fact, for LEAD PURSUIT, the UPTs
show no link to any concept in the Guns Subassembly to which it
belongs. Two other critical relations shown in Table 30 are worth
highlighting here. Both the VERTICAL MANEUVERING--QUARTER PLANE and
the ACCELERATION-~EXTENSION relations are highly discriminating
relations according to the pattern classification analysis discussed
earlier. The fact that these two relatinns are critical (according to
the GWN analysis) and the fact that they are important in discrim-
inating between novice and experienced pilots (according to the
pattern classification analysis) provide convergent validation that
these relations are important parta of an cxpert's organization of
flight tnformation that is lacking in that of the novice.
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Table 29

Comparison of Novice and Expert Conaepts

| Well-Defined Congepts

i QUNS PURE PURSUIT SWITCHOLOGY
f G LOADING LIFT VECTOR 6 0'CLOCK 3
L AIRSPEED OVERTAKE CORNER VELOCITY 3

Over-Defined Concepts (Compare Table 30) ]

SNAPSHOT WEAPONS ANQLE OFF _
VERTICAL MANEUVERING HI YO YO QUARTER PLANE
BARREL ROLL SMASH RELATIVE ENERCY ]
LAG PURSUIT 3~9 LINE ACCELERATION
EXTENSION LO Y0 YO 1

Under-Defined Concepts (Compare Table 30)

LEAD PURSUIT CUTOFF POWER SETTING
ASPECT ANGLE HEAT

!
Misdefined Concepts ‘ i
LAG ROLL RADIAL G 1
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Table 30

—are emNATNC e

Differences in Concept Links for Novices and Experts

Critical Expert Links not in Novice Network
(Underdefined Concepts)

| GUN3-LEAD PURSUIT SNAPSHOT-ANGLE OFF ‘
‘ CUTOFF-LEAD FURSUIT VERTICAL MANEUVERTING-QUARTER PLANE !
" VERTICAL MANFUVERING-AIRSPEED AIRSPEED-POWER SETTING
; LAQ ROLL-ASPECT ANGLE LAG ROLL-G LOADING
; LAG ROLL~AIRSPEED ASSEMBLY LAG PURSUTT~HEAT ASSEMBLY
| ASPECT ANGLE=3/9 LINE 0 LOADING-GUMS ASSEMBLY
il RADIAL Q-VERTICAL ASSEMBLY RADIAL QG-ANCLE OFF ASSEMBLY i
J HEAT-6 O'CLOCK ACCELERATTON-EXTENSION '
4 LO YO YO-AIRSPEED/ACCELERATION

MACROASSEMBLY

s Links in the Novice Network not found for Ex orts

—— S - o—

T T T(Overdefined Concepta) .'

QUNS-6 0'CuLOCK 4/9 LINE-SNAPSHOT

BARREL, ROLL~SNAPSHOT WEAPON3S PARAMETERS-EXTENSION oo

WEAPONS PARAMETERS=-LAQ ROLL WEAPONS PARAMETERS-RADIAL G o

WEAPONS PARAMETERS-G LOADING CUTOFF-3/9 LINE

ANQLE OFF-OVERTAKE VERTICAL MANEUVERING~RELATIVE ENERQY

HI YO YO-LO YO YO HI YO YO~ 3/9 LINE ]

LIFT VECTOR-QUARTER PLANE QUARTER PLANE-EXTENSION f

QUARTER PLANE-ASPECT ANGLE QUARTER PLANE-LO YO YO ]

SMASH=HEAT POWER SETTING-ACCELERATION

RELATIVE ENERQY-LAG PURSUIT RELATIVE ENERGY-LO YO YO

LAQ ROLL-BARREL ROLL LAG ROLL~3/9 LINE

LAG PURSUIT-RADIAL @ RADIAL Q-BARREL ROLL \ i
!
i
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Perhaps as seriocus as not having the correct relations is having
inappropriata relations. The overdefined connepts are those that the
students have connected to the network in a fashion that is different
from either group of experienced pilots, For some oconcepts, this
overdefinition is quite severe: WEAPONS PARAMETERS, QUARTER PLANE, and
3-9 LINE. In fact, for QUARTER PLANE, 19% (4/21) of those relations
not found in an exparienced pilot's nrtwork are inoluded in the UPT
structure. One cther inappropriate relation is worth highlighting.
The pattern olassification procedures suggest that this relationahip
is highly disoriminating, and the network analysis suggests that it is
important to the UPT struoture: HIGH Y0 YO=--LOW YO ¥O. Apparently the
similarity between HIGH and LOW YO YO is in name only for the exper-
ienced nilota, yet the UPTs have that as a direct ooncept-to-conacept
link in their network.

Finally, two conoepts did not include many of the oritical 1links
and, in addition, included many extraneous links. In this sense, LAG
ROLL and RADIAL G were both underdefined and overdefined, but mora
appropriately we have termed them misdef'ined, For LAG ROLL, tha UPTs
do not have oritical 1inks to ASPECT ANGLE, O LOADING, nor any link to
the AIRSPEED SUBASSEMBLY., Instead they do have extraneous links from
LAG ROLL to BARREL ROLL, 3-9 LINE, and WEAPONS PARAMETERS. Similarly,
for RADIAL G the UPTs have no critical oonnectiens to any concept in
either the VERTICAL SUBASSEMBLY or the ANGLE OFF ASSEMBLY, but do have
extraneous links to WEAPONS PARAMETERS, LAG PURSUIT, and BARREL EHOLL.

This phase of the project has highlighted those concepts and
relations that the UPTs have not as yet maatered. The emphasis on
differences between the UPTs and expert pilots should not be taken as
indicative of the progreas of the UPTa, In faat, their overall
correspondence with the IPs, and especially with the GOPs, is quite
high. Several concepts are quite well mastered while several others
are only slightly (1 link) different from the more experianced pilots,

The use of general networks and the GWN algoritm holds substan-
tial promise in attempts to specify the local relationa and struoture
present in the oonceptual organization of oaritiocal flight inform-
ation. In addition, it allows a detailed, ooncept-by~concept, compar=
ison across groups that differ in expertise. The use of networks
coupled with other tecshniques, especially MDS aund pattern olassif-
ioution, should provide valid, usable information in a form that oould
be inocorporated into the training procedures of fighter pilots,
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GENERAL DISCUSSION

Primai-y Accomplishments

This project has produced several interesting and potentially
useful findings. The major new theoretical contribution lies in the
development of methods for obtaining and analyzing networks of
concepts. This method should contribute to the continued development
of an understanding of structures and processes in semantic memory.

'In the domain of critical flight-related concepts, we have shown
that systematic methods can yield valid and reliable descriptions of
the structure of these concepts. Further, these structures can be
used to identify individuals as members of groups with different
training and experience. We have also identified some specific areas
of disagreement in the structures possessed by expert and novice
pilots. These specific differences may deserve special attention in
lead-in fighter training. The structures themselves may also prove to
be useful in the academic program since they provide some graphic
examples of the differences in the ways novices and experts think
about critical flight concepts.

In the context of the ongoing effort in this contract, this first
contract period has resulted in several analytical methods with which
to pursue experimental analysis of conceptual structures in fighter
pilots. While much of the initial effort has been concerned with
measurement issues, it has been necessary to define and validate the
basic purpose of the contract. The work in the initial period has
also led to several structural- analyses that serve to define struct-
ures of memory for critical flight information. We now have a firm
foundation on which to build further work. While we intend to
continue to investigate the problems associated with representing
knowledge, the next contract period will include experimental
investigations of the structures we have already established.

Utility and Limitations of Particular Structural Analyses

In this project, several techniques have been applied for
obtaining structural representations of critical flight information.
We began by applying traditional scaling techniques, such as multi-
dimensional scaling and hierarchical clustering analysis to psycho-
logical distances derived from similarity ratings. We then developed
a new structuring technique, general weighted networks, and applied it
to the same similarity data. Though the resulting critical flight
structures point to a number of similar conclusious, they dé-differ in
a number of ways. Consideration of these differences in light of the
current interest in fighter pilot conceptual memory will allow the
important details to be abstracted from cach structure. These details
can be used to gain an understanding of critical flight information
that could not be gleaned from any s3ingle structural representation.
We believe that the appropriate use of a)l]l structural representations
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is the most sensible way to proceed in attempting to understand any
organized oaonceptual domain, It is a partiocularly rational approach
in attempting to understand oconoceptual domains that have been
sub jected to almost no prior analysis, as is the ocase with oritical
flight information,

Consider first the results of the Multidimensinal Scaling (MDS)
procedures. MDS took as inpul a set of empirical psychologioal
distances and produced a set of derived distances. The derived
distances contained metric properties that ware not present in the
empirical Jjudgments, = The fact that this metric information is quite
useful ia highlighted by the oconsistent improvement in correlations
found with distances compared to empirical ratings and in the more
succesaful pattern olaasifioation found with the MDS distances, The
constraints that MDS places on the distances are quite saevere (e.g.,
the formation of isosceles triangles) and thus results in both very
useful and very misleading information in the struoctures, The useful
information appears in the form of global properties of the
struoture, For example, only MDS oan abatract dimensions from the
rating data, but it ocan produce looal distortions in the distances
between partiocular pairs of conoepts,

With MDS, solutions of moderate dimensionality were obtained for
eaoh of the subjeot groups. Provided that the dimensions produced in
the solution ocan be identified, these dimensions ocan provide a great
deal of information about the underlying oharacteristic features of
the aonceptual domain. For example, the fact that a temporal sequenc-
ing seems to pervade these domainas is obviously oritical to the
understanding of the structure., The temporal dimension serves as a
good example of both a strength and weakness of multidimensional
soaling solutions. No other socaling solution could have shown this
continuous feature of the structure. Thus, MDS is unsurpassod in its
ability to point out important underlying gontinuous dimensions of
variation in the concepts. Alternatively, if the underlying dimenaion
is disorete then the MDS solution is leasa than optimal and should be
used in conjunction with one of the other saaling procedures, 30,
though the metric properties of an MDS aolution allows for the abatrac-
tion of dimensions, a boundary oondition on the usefulnesa of thias
global feature of MDS is that the dimension be ocontinuous.

Though the MDS metric placea pointa in an N dimensional space and
allows for the identification of aontinuous dimensions, the metric
requires a certain sacrifice to aoccomplish this, The saorifice is in
terma of loocal diatortions in the struoturs whioh prevent an analyais
of the suboomponents of the MDS struoture, Hierarchical Clustering
(HC) analysis and General Weighted Networks (GWN) foous on these looal

;olnbionlhips, though they provide less global information than doea
DS.
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HC tranforms the empirical ratings into a set of classes. A
concept within a cluster is more related to another member of the
cluster than to a congept from another cluster, Comparing an HC
solution with an MDS solution for the same data helps point out some
of the distortions that MDS makes in the local structura, Two items
close together in multidimensional space may not cluster together
while two items distant in space mmay cluster together, Figure 17
shows an HC solution superimposed on a two dimensional space of split-
plane concepts for IPs, !

HC requires that a oconcept belong to one and only one cluster i

though that ocluster as a whole may belong to a larger, in a sense 1
superordinate, cluster., This hierarchical constraint also results in
some distortions in the structurc since many concepts do not exist 4

with one another in a hierarchical relationship. Another problem with i
using HC as a means for determining local relations is that there is
no a priori way to partition the tree to allow finer grained
analyses, Though the trees for UPTs and IPs were partitioned into
five major clusters, this ocouuld have easily been four or seven.
General welghted networks provide a better vehicle for determining
local relations. However, HC does produce fres nodes in its solution
(unlabelled nodes 1in the tree) that GWN does not produce in its
present form. These free nodes may be valual'le if one wished to
determine hierarchical relations, though they are often difficult to
label. The GWN does not distinguish between hierarchical and
nonhierarchical relations without uome a priori knowledge of the
relationship between oonoepts. However, MDS, HC, and GWN are not
; typically applied to random collections of concepts; rather the user i
; typically brings intultion to beuar on the establishment of the

; conceptual domain., Thus there is no apparent benefit of HC over OWN
for establishing local relations within a conceptual structure.

TH T TS T T T s

! GWN also takes psychological distance data as input and produces

4 oconceptual structure in the form of a network, Currently, the |
network mirrors the original ratings rather than transforming them in

any way. This has the advantage of ataying olose to the data base

and, thus, not introducing distortion into the links. However, there

is distortion in ochains of links in that the original ratings do not

correspond to the length of a chain, Future work will focus on

improving the metric properties of GWN.

TP
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, Networks have a number of properties that allow for a better
understanding of conceptual structures. Unlike MDS, networks focus on
the local relations of the structure. In this sense, it is sipilar to
HC. Networks allow multiple connections within the structure and thus
allow one to partition the network into assemblies and cycles. As has
been shown in this report, assemblies and cycles form meaningful units
that aid in the understanding of the overall network. In addition,
cycles and assemblies allow a comparison across groups of individuals
on a concept-by-concept basis: a task that is difficult or impossible
to do with the more traditional scaling procedures. Finally, networks
are weighted and this distance information can be used to form minimum
cycles, determine the concept in the network that is closest to all
other concepts (median), or determine ‘the concept that allows the most
rapid connection to the most distant concept (center). Though these
last two properties are more interpretable in a metricized network,
their potential for summarizing networks and differences among
networks can be quite useful. Finally, networks potentially allow
concepts as well as links to be weighted. More important concepts or
more "costly" concepts could be weighted in such a way as to make some
concepts more critical than others. As GWN now stands, it provides a
great deal of informaticn about the local structure of conceptual
domains and, with the addition of a metric, will introduce a number of
other features that will aid in understanding critical flight inform-
ation. We believe that the results of GWN, coupled with the global
characteristics gleaned from MDS analyses, should provide the best
understanding of the structure of critical flight information.

Directions for Future Work

‘One major area to be pursued in future work concerns the
experimental verification of the structures we have identified. We
intend to pursue this goal with priming methodology and recognition
memory experiments. We are also proceeding with the analysis of
memory in the form of scripts and frames. It would also be useful to

- pursue the predictive power of these techniques by systematically
following individual UPTs through training. Perhaps individuals could

- be identified who would most benefit from fighter btraining.

The network algorithm should be developed further. It should be
possible to develop a metric based on the network that could lead to
some experimental comparisons of the MDS metric and the GWN metric.
While the network itself is produced by an algorithm, more work is
needed to develop algorithms for defining cycleés and assemblies in the
networks. In short, the network representation is most promising, and
" additional .efforts will be required for the network analysis to reach

ips full potential.
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Further detailed analysis of the conoepts from the low-angle
atrafe maneuver could be performed along the same lines as that
presented here for the split-plane maneuvers. Also, another group of
students who have completed fighter lead-in training should be
obtained to permit an analysis of the effects of training in the
specific maneuvers represented by our stimulus materials.

Recommendations

The researoh presented in this report provides a detalled
analysia of the oconceptual atructure of critical flight information
in fighter pillots, As such, the structures should be of use in
designing training programs for students attempting to acquire these
conceptual structures., In addition, the representations themselvaes
may prove to be useful as training aids. The network analysis, for
example, shows how expsrt fighter pilots organize the conoepts
involved in particular maneuvera. To the extent that the network
repreaentation provides an understandable repreaentation of experts’
knowledge structures, students may find it useful in learning about
the manauvers,

From a somewhat different angle, we have identified specifie
differences in the oconceptual structures of students and expert
fighter pilots. In particular, the differences show, in part, what
experts know that students do not and what misconceptions the students
may have acquired from earlier training or from other life exper«
iences. These areas of difference should receive special attention in
the training program for fighter pilots.

Finally, our work in olassifying individuals based on their
conceptual structure suggests further work in attempting to prediot
the success of future fighter pilots based on the conceptual
structures students demonstrate early on in training. 1t may be
necessary to study the struoctures asaccianted with a different set of
concepts than those used in the present investigation. For example,
perhaps some conocepts relating to attitude and motivation should be
included along with oconcepts relating to the operation of aircraft.
The olaasification techniques we have developed appear to be very
sensitive to differences in cognitive structures, and they may well
provide some predictive power for organizing the training program to
produce maximum benefit for those who are likely to benefit the moct
from figzhter training.

~89-

b el am—iem i Sm—.




REFERENCES

Christofides, N. Graph heorz An Algorithmic Approach. New York:
Academic Press, 1975. ' ' ‘

Collins, A. M., & Loftus, E. F. A spreading activation theory of
semantic processing. Psychological Review, 1975, 82, H407-428.

Collins, A. M., & Quillian, M. R. Retrieval time from -semantic
memory. Journal of VerbaliLearning and Verbal Behavior, 1969, 8,
240-2417. -

Collins, A. M. & Quillian, M. R. Facilitating retrieval from s'emantic
memory: The effect of repeating part of an inference. In A. F.
Sanders (Ed.), Attention and Performance III. Amsterdam: North-

Holland, 1970.

Conrad, C. Cognitive economy in semantic memory. Journal‘g_f_‘ Exper-
imental Psychology, 1972, ¢2, 149-15l4, :

Fillenbaum, S., & Rapaport, A. Structures in the Subjective Lexicon.
New York: Academic Press, 1971.

Hutechinson, J. W. Network representations of psychological
relations. Unpublished Ph.D. dissertation, Stanford University,
1981. ’ '

Johnson, S. C. Hierarchical clustering schemes. Psychometrica, 1967,
32, 241-254, —

Kruskal, J. B. On the shoitest spanning subtree of a graph and the
traveling salesman problem. Proceedings of the American
‘Mathematical Society, 1956, 7, 48-50. .

Kruskal, J. B. Multidimensional scaling and other methods for
discovering structure. In Enslein, Ralston, and Wilf (Eds.),
Statistical Methods for Digital Computers. New York: Wiley, 1977.

Meyer, D. E., & Schvaneveldt, R. W. Facilitation in recognizing pairs
of words: Evidence of a dependence between retrieval operations.
Journal of Fxperiment.al Psychology, 1971, 90, 227- 234

Meyer., D. E., & Schvaneveldt, R. W. Meaning, memory Structure and
mental processes. Science, 1976, 192, 27-33.

¥ilsson, N. Learning Machines: Foundations of Trainable Pattern-
Classification Systems. New York: McGraw-Hilil, 1965.

Quillian, M. R. The teachable language comprehender. Communications
of the Association for Computing Machinery, 1969, 12, U459-475,

~90-



Rips, L. J., Shoben, E. J., & Smith, E. E. Semantic distance and the
verification of aemantic relations. Journal of Verbal Learning and
Verbal Behavior, 1973, 12, 1-20.

Schvaneveldt, R. W., Durso, F, T., & Mukherji, B, R. Semantic
distance effects in categorization tasks. Journal of Experimental

Paychology: Learning, Memory, and Cognition, 1982, 8, 1-15.

Sohvanaveldt, R. W,.,, & Meyer, D. E. Retrieval and comparison
processes in semantic memory. In S. Kornblum (Ed.), Attention and
Performance IV. New York: Academic Preas, 1973.

Shepard, R. N. Analysis of proximities as a technique for the study
of information processing in man. Human Factors, 1963, 5, 33-48,

Smith, E. E,, Shoben, E. J., & Rips, L. J. Structure and process in
semantic memory: A featural model of semantioc deoisiona,
Psychological Review, 1974, 81, 214-241,

-91-




I g .“-a;' i

APPENDIX ¢

: The tables in the appendix present the detailed inter-individual
o correlations for both rating scores and MDS distances. Both the aplit-
blane concepts and the low-angle strafe concepts are represented,

T

Split-Plane Manuevers
Inter-Individual Correlation Matrix

11 through 17 are individual instructei pilots

[PIE

Rating Scores
I I2 I3 Iy 15 16 17

11 - 135 o“? .'-35 .uz .58 .’43
12 o35 - o“’ |u1 o“? 038 032
13 .47 M1 A9 .43 .42 W43

I4 45 41 49 -
15 .42 .47 43 M1 -
16 058 038 0“2 oua .NZ -
17 .43 .32 43 W41 W41 ,37

0“1 ou3 1“1
A2
37

Mean Correlation = .42
Distances in Multidimensional Space
11 12 13 I4 15 16 I7

11 - 03“ 053 150 |u5 -57 o“?
12 13“ - ou1 .uo ou3 D35 038
13 053 l“‘ - -59 uu? -uu -52
Iu 050 .NO -59 - ou1 051 051
I5 .45 43 47 N - 41,49
I6 .57 .35 .44 517 41 - .37
17 cu7 038 052 !51 lug 037 -

Mean Correlation = ,U§
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Split~Plane Manuevers

Inter-Individual Correlation Matiix

01 through G9 are individual guard pilots

Rating Scores
G\ 82 63 G4 G5 G6 G7 GB Q9 1

a1 -

g2 .44 -
03 .42 40 .
a4 .32 .36 .33
G5 .30 .42 .29 .32 -

' 06 137 -u3 .UO o38 038 -

i a7 .34 .51 .43 .25 .31 .30 - .33 .38 _

l 08 038 0“3 I31 |u2 029 |u6 033 - 0?5 %

. 09 036 036 -39 l33 033 -36 038 125 - )

.uu ouz 032 -30 .37 .3“ 038 u36 i
Ouo l36 lu2 0“3 l51 nu3 |36 ;
.33 .29 .40 .43 .31 .39 :
= .32 .38 .25 42 .33 3
38 .31 .29 .33
.30 46 .36

Mean Correlation =z ,36

Distances in Multidimenaicnal Space

L

GY ©2 @63 G4 a5 66 a7 08 09

G1 -~ LU0 LUT .37 .32 .34 .39 .38 .37
02 Ouo - .“7 oua 0“1 lu1 -50 .uo 038
G3 .47 W47 - 42 .32 .43 .54 ,33 .50
Ou |37 Oua |u2 - q35 |u3 .35 .u1 038
Qs 132 0“1 032 !35 - 132 .38 |27 033
06 lau cu1 .u3 |u3 .32 - '3“ ."5 l36
a7 .39 .50 .54 .35 .38 .3 - .32 .47
08 l38 .“0 -33 .u‘ 127 lus l32 - 129
69 .37 .38 .50 .38 .33 .36 .47 .29 -

e Mt e e,

Mean Correlation = .39
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Split-plane Manuevers
Inter=Individual Correlation Matrix
Ul through U17 are individual undergraduate pilota

: Ul U2 U3 U4 U5 UG U7 U8 U9 UI0 UTT UI2 U3 U1L UIS UI6 U17
Rating Scores

U1 - 031 .2“ o29 037 030 o‘u 028 ou" oau .36 .HO 031 uu“ 135 .29 .2"
v .31 - .26 .32 ,26 .25 .12 .21 .34 ,30 .34 .29 .26 .36 .28 .28 .28
U3 .24 .26 =~ .32 .37 .31 .26 .44 .37 .29 .44 .36 .35 ,38 .27 .30 .23
ud .29 .32 .32 - .39 .30 .12 .30 .45 .33 .47 .29 .30 .49 .27 .35 .28
U5 137 u26 037 039 - .20 122 .28 0“2 .2“ .38 .u1 026 .52 n27 029 -30
U6 .30 .25 .31 .30 ,20 - .25 .34 .33 .24 .30 .26 .29 .35 .25 .18 .28
U? n1u 0‘2 526 512 522 325 - 02“ 028 .30 .30 .3“ .30 .32 .17 .23 .28
Ua .28 021 ouu o3° 028 o3u .2“ - 036 ¢26 lu3 02“ o"‘ .36 022 019 021
U9 quu lau 037 |u5 -u? .33 l28 536 - 037 ou3 Q3u 036 .u6 031 p30 .29
U10 .34 .30 .29 .33 .24 .24 .30 .26 .37 - .34 .36 .31 .36 .30 .27 .26
U11 n36 031‘ ouu ou? u38 030 030 ou3 ou3 oau - 136 INB tu3 138 |32 029
U\Z .uO 029 ¢36 029 ou1 026 osu .2“ o3u 036 036 - '32 tu7 031 029 027
V13 .31 .26 .35 .30 .26 .29 .30 .41 .36 .31 .43 .32 -« .39 .29 .29 .29
U‘u ouu '36 038 oug |52 035 032 036 0“6 036 |u3 |u7 039 - 033 035 035
U15 035 028 027 l27 027 025 017 022 |31 030 038 031 029 n33 - o18 l26
U16 .29 .28 .30 .35 .29 .18 .23 ,19 ,30 .27 .32 .29 .29 .35 .18 - ,3U4
U7 .24 .28 .23 .28 ,30 .28 .28 ,21 .29 .26 .29 .27 .29 .35 .26 .34 =

Mean Correlation a ,31

Distances in Multidimensional Space

Ur - .33 .28 .28 .33 .27 .24 .31 .46 .39 .39 .30 .29 .43 .30 .32 .26
02 133 - 027 027 .18 122 018 1’9 .3” 028 029 l?u 329 .36 026 .31 026
U3 -28 .27 - u33 035 027 025 138 038 032 ou1 028 033 131 026 l33 '21
Uy .28 ,27 .33 - .27 .16 .12 .27 .36 .34 .39 .2Y4 .33 .41 .26 .29 .29
US .33 .18 .35 .27 =~ .17 .10 .31 .27 .22 .32 .26 .22 .44 .25 ,23 .25
U6 -27 022 027 016 .17 - 029 029 035 119 -23 122 127 036 121 |15 525
U7 .24 .18 .25 .12 ,10 .29 - ,20 ,29 .33 .32 .23 .28 .25 .13 .30 .27
Us -31 -19 l38 -27 031 329 020 - '35 029 .“2 o21 135 035 .29 021 019
U9 |u6 -3“ 038 036 027 -35 029 035 - -38 .u2 128 -Su .“7 -33 -28 031
U1 039 tae '32 .3“ n22 019 033 029 038 - ou1 .2” 031 .32 -37 n3° .28
U1 .39 .29 .41 .39 .32 .23 .32 .42 .42 .41 - .21 .43 ,35 ,38 .25 .26
U12 |3° .2" 028 -2“ 026 o22 |23 -21 |28 .2“ .21 - 015 037 -20 .2" .26
U13 129 029 033 033 022 .27 028 035 03“ .31 .“3 .15 - 0"0 126 l29 026
U1“ |u3 |36 .31 lu1 ouu .36 |25 035 .u? |32 035 -37 .“0 - '28 035 ou3
U15 |30 126 026 026 025 021 -13 029 033 '37 ‘38 l20 026 .28 - .1“ '28
Ui6 .32 .31 .33 .29 .23 .15 .30 .21 .28 ,30 .25 .24 ,29 .35 .14 - ,28
U17 026 -26 021 029 025 '25 127 019 l31 028 026 n26 026 tu3 !28 028 -

Mean Correlation = .29
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Split-Plane Manuevers
Inter-Individual Correlation Matrix
W1 through W4 are individual IWSOs

Rating Scores

Wi W2 W3 Wi

"1 - 5“5 .“2 .40
we .45 - .24 ,28
W3 0“2 .2“ - 150
w4 4o ,28 .50 -

Mean Correlation = .38

Distancea in Multidimensional Space
: W1OW2 W3 Wh

- 036 ou6 ous
! we .36 .« .24 .23
‘. W3 ‘“6 .2" - 053
3 Wh U5 .23 .53 -
|
|

LA

Mean Correlation = ,38
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Split-Plane Manuevers

Inter-Individual Correlation between Guard
and Instructor Pilots

G! through G9 are individual guard pilots

Rating Scores
G 62 G3 G4 G5 06 a7 a8

.38 .42 .u8 ,38 .32 .34 .38 .42
36 .33 .35 .21 .25 WAk .31 .16
A0 41,39 .30 .30 .28 (M2 .32
.38 .39 .41 .31 .37 .33 .42 .28
.38 .36 .44 .27 .24 .29 .39 .26
34 .31 .40 .29 .24 .32 .30 .28
+39 46 U3 .37 36 .35 .48 ,25

Mean Correlation » ,35

Distances in Multidimensional Space

—————— G ————

G1 @2 G3 o4 0G5 66 a7 08

-38 .'40 050 ouu 136 039 .1“4 036
»37 .31 .36 .30 .29 .27 .39 .23
J42 W45 .47 .29 .35 .30 .48 .30
41 .39 .45 ,33 .38 .30 .ui5 .24
.32 .36 .u8 .27 .25 .32 .41 .25
<37 .33 LWt .32 2% L3t .28 .28
Jd2 .51 52 40 .36 .35 .49 .29

Mean Correlation = .37
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F I1 through I7 are individual instructor pilota
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Split-Plane Manuevers

Inter-Individual Correlations for IPs and UPTa

11 through 17 are individual inatructor pilots
U1 through U17 are individual undargraduate pilots

11 I2 13 I4 1% 16 17 j

Rating Scores
U1 .23 .20 OB TEE-13 .16 .29 ’
U2 .18 .06 .10 .18 .13 .13 .16 4
[

i U3 .31 .22 .26 .34 .29 .22 .26
| U4 .23 .14 .15 ,26 16 .23 .23
| U5 15 .16 .15 .25 .23 .09 .17
: UG !26 .11 '17 -29 019 .17 025 }
: u? 12 .10 .21 L300 17 .06 24
; UB .25 .06 .11 .25 18 ,20 .2l
[ U9 .30 .18 18 .32 .17 .19 .25
r Ul 16 .12 .13 .25 19,09 .20
‘ U1t .33 16 .21 .30 31 .21 .32 ‘
! g12 .13 .19 .18 23 ,23 .07 .25 !
1 Ut3 .24 17 Jt4 21 19 16 W32
: Vil .37 .19 19,32 W22 W21 .29
3 U15 24 13 10 .24 .23 .19 .35
u1é .34 .17 .31 .31 .23 .30 .28
u1l7 16 L1109 .27 19 W21 .16

T i 6 b,

Mean Correlation a ,20

Distance in Multidimensional Spmce
U .28 .25 ~.17 .28 .21 .2h .27 i
v2 .21 .08 .11 .12 17 .12 .18

U3 .31 .24 2% .29 .29 .20 I}
U4 .21 .17 .13 .24 .20 .23 .24 |
U5 410 .19 .11 AT W21 13 5 ‘ j
U6 .25 16 .22 .27 .21 .19 .28
uT 22 2% .20 .29 .22 .13 .29
U8 .27 .16 17 .25 .26 .20 .29 i
U9 .34 .18 .20 .34 .24 .22 .28
U10 .19 16 L1t 19 1B 15 .27
U1t .28 .19 .20 .23 .32 .21 .27
V12 .22 .26 .21 .20 .25 JH . i
U13 .23 .15 .16 .20 .23 .15 .32 |
vl ,37 .29 .24 .32 .30 .29 .29 :
Uis .18 17 10 W21 .20 .2V .26

U6 .30 .22 .31 .26 .26 .26 .30
UiT 14 23 .09 ,30 .27 .20 .16

Mean Correlation = .22
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Split-Plane Manuevers

Inter-Individual Correlation Matrix for Instructor Pilots
and Instructor Weapons Systems Officers

I7 through I7 are individual instructor pilots

W1
w2
w3
L L]

W1
We
w3
Wy

W1 through W4 are individual IWSOs

Rating Scores
I I2 13 14 I5 16 17

.37 .37 .41 40 .45 ,38 .38
21 40 .30 .22 .38 .20 .26
-39 035 .HZ .ug ""3 '37 0u8
46  JKO .54 48 42 ,uB8 .47

Mean Correlation = .39

Distance in Multidimensiunal Space

I 12 13 14 15 16 I7
A1 L34 .43 .42 43 W43 L2
09 .31 .22 .15 .26 .15 .21
LAn o 42,54 .53 .50 Ju4 .55
.54 .45 .55 .50 .47 .51 .53

Mean Correlation s .40
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Inter-Individual Correlation Matrix for GPs and UPTs

Split-Plane Manuevers

GY through G9 are individual Cuard pilots
U1 through U7 are individual Undergraduate pilota

un
U2
u3
'L
US
vé
u7
v8
ug
U10
U
u12
U13
Ul
u1s
u1é
u1?

G1

+19
24
.23
A7
.09
23
15
18
23
19
27
15
3N
517
.29
.20
-1“

Distances in Multidimensional Space

2

21
21
.22
13
«25
.15
021
30
25
.28
.18
.23
+ 22
+26
20
-1“

G2

17
«23
«33
24
21
.21
.27
2l
.26
.26
o3
24
.28
23
v23
N0
+20

19
.23
.32
.28
12
+20
«30
.27
-1
.28
.28
21
27
«25
»20
.46
.19

Mean Correlation = .24

G3

Rating 3scores

.19
.18
29
19
19
29
22
.26
+29
.19
27
25
.30
27
+25
29
22

G4

21
+29
35
26
21
.30
27
-28
.28
.25
.38
.26
.29
35
.29
.29
.28

a5

.28
15
-29
.26
.19
.21
.29
.19
.28
.26
36
29
+25
30
.28
-26
.16

Gb

22
.26
+28
25
22
»23
.22
.15
o3
.28
«33
23
.27
»32
.26
.28
.22

G7

A7
.18
.30
13
<13
.18
.23
19
.22
.16
.28
.16
.22
»23
.20
.28
.16

Mean Correlation 2 .24

.22
+13
3N
18
.19
.33
-28
.23
.28
.25
.25
22
23
27
.23
«31
.18

2h
2l
.32
24
A7
.37
.33
.32
27
.33
.33
.26
.28
.38
.29
.33
R

27
16
.28
.23
.15
.20
.32
A7
.23
-26
39
916
23
028
.18
+30
.10

=100~

.23
.20
.32
.25
.21
.2"
.22
.15
.27
.25
+30
17
.29
.28
.21
I26
7

.32
.23
.32
4
A7
.23
N
.23
030
.28
.32
22
.26
.28
19
026
23

GB

21
.28
.30
.26
.20
<30
.09
.28
.28
.20
+35
L
l22
.25
.23
.29
.18

27
.23
.30
29
W16
.27
W16
.33
24
.28
.36
11
+25
.28
«30
+30
.15

G9

21
J2
21
.21
15
23
A7
21
21
.19
.34
.18
21
.20
.2l
.26
.18

25
.10
.22
A7
.09
.22
.25
.19
22
24
w2l
»19
.12
22
19
lzu
.18

et S ™2
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Inter-Individual Correlation Matrix for Guard Pilots

W1
we
W3
Wiy

W1
w2
w3
Wi

Split-Plane Manuevers

and Instructor Weapons Syastems Officers

C1 through GY are individual Guard pilots

C1

39
«30
.38
A5

G1

.36
.18
<39
.49

G2

.34
.23
40
U2

g2

«35
21
A5
48

G3

46

25
4l
L

Gl

+34
» 15
24

23

G5

31
.18
33
.30

Rating Scores

a6

+40
21
23
.26

G7

33
AT
1

+39

Mean Correlation = .31

G3

U8
19
55
48

ay

JHY
.08
35
3

as
37

A2
+39
39

a6

.36
.09
31
.32

a7

.38
12
49
U4

Mean Correlation = .34

-101-

W1 through WY are individual IWSOs

a8

+25
.10
22
24

Distances in Multidimensional Space

a8

.22
.04
.27
.28

G9

U6

25
.38

45

c9

2U
0,48
.49

e

i Sadalibiga

P

B P O IS
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Split-Plane Manuevers

Inter-Individual Correlation Matrix for UPTs and IWSOs

U1l through U17 are individual undergraduate pilota
W1 through W4 are individual IWSOs

Wi W2 W3 Wi

Rating Soores
U .1 07 .26 .19 !
U2 009 001 |1u .08
Uz .26 .10 .22 .25
U4 .20 .03 .23 ,22
s .23 .11 8 M
u6 .22 .10 .23 .22
ur .27 .10 .26 .21 3
‘! U8 016 oou 026 .2“
{ U9 .18 .04 .24 ,25
! U1 .21 .07 .20 .16
i ult .36 .12 .30 .29
v12 .22 .19 .21 .13
: U113 .27 .11 .27 .2M
: uid .30 .08 .33 .19
i UIS .17 .09 .19 .17 {
4 vit6 ,30 17 .29 .25 J
1 U177 .22 .04 .15 .15 '

!
!
Mean Correlation = ,18 i
¢ 1
1 Distances in Multidimensional Space ‘
U‘ 023 012 o29 026
~ u2 .14 ,03 .16 .10 !
3 U3 527 107 u32 n26
o4 .19 .10 .26 ,22 i
us .26 .12 .19 .10 {
U6 .26 .05 .3t .23 i
U7 .33 .12 .36 .28
U8 .14 ,01 .29 .25 /
ve .22 .05 .32 .32 !
U0 .25 .05 .29 .20 }
U11 l29 111 .27 .32
vi2 .19 .17 .20 L2M
U113 .21% ,09 .31 .29
Ui .27 .06 .35 .23
vis .12 .04 17 A7
U16 .29 .17 .30 .27
UiT .22 .08 .20 11

Mean Correlation s .20
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Low=Angle Strafe
Inter-Individual Correlation Matrix
11 through 16 are individual inatructor pilota ;
Rating Seores :
11 12 13 Iu 15 16

I1 - .u9 u39 057 !“9 ou1 E
12 49 - 40 .50 .42 .39 ;
Ia 039 ouo - lu7 036 031
Iu l57 -50 -u7 - 053 0“5
IS 0"9 .“2 036 053 - .uZ

16 tu1 039 031 ous .ua -

Mean Correlation = .4l

Distances in Multidimensional Space

In I2 13 I4 15 I6

I1 - 057 ous 06“ 051 .u“
12 057 - ouu 57 U1 50 i
I3 45 U4 54 44,38 1
I“ o6u -57 -5“ - 053 .N9
I5 .51 .41 44 ,83 - W4
I6 M4 .50 .38 .49 44 -

Mean Correlation = .49

T e e 4 i e .k

=103~ 1




Low-Angle Strafe

Inter-Individual Correlation Matrix

Ut through U16 are individual UPTs -

Ul U2 U3 U4 US U6 UT U8 U9 U0 U1Y UI2 U13 Uk U1S U6

Rating Scores !

|
U1 - 423 .27 .18 .22 .30 .25 .78 .24 3% .,”u .29 .29 .25 .18 .7 i
U2 .23 - .40 .31 .33 .32 .33 .39 .34 .41 .30 .20 41 .29 ,29 .40

U3 .27 40 - (42 .24 ,29 .32 .U4T7 .37 .51 .38 .21 .38 .27 .37 .37
U4 .18 .31 W42 - ,25 .27 .27 W34 .25 ,30 .28 .22 .31 .25 .37 .32
Us .22 .33 .24 .25 - .23 .37 .31 .23 .32 .09 .24 .21 .26 .27 .32
U6 .30 .32 .29 .27 .23 - 4O U5 W4 .47 .25 .36 .31 .31 .33 .32 ;
U7 '25 033 032 027 l37 -‘40 - |31 |u1 0“7 016 037 .39 l29 032 037 j
: U8 .28 .39 .47 .34 .31 (U5 .31 - .35 .49 .31 ,32 ,37 .33 .40 .10
' U9 .24 .38 .37 .25 .23 JHb4 .41 .35 - 4
U10 035 lu1 051 o3° 032 Ou7 Iu7 oug ."2 - .?9 .“3 .u3 137 .'40 .u6
U111 .29 .30 .38 .28 .09 .25 .16 .31 .24 .29 - .11 .27 .25 .18 .29 :
U12 029 020 021 522 -2“ .36 v37 -32 035 ou3 111 - |19 -21 .2‘6 -32
U13 .29 .41 .38 .31 .21 .31 .39 .37 .36 .43 .27 .19 - .29 .34 .39
Uﬂl -25 -29 027 025 026 ‘31 ¢29 533 032 -37 -25 021 029 - o29 025
u15 018 l29 537 '37 027 033 v32 -“0 -36 -uo 018 .2" osu 129 - l38
U16 .25 .40 .37 .32 .32 .32 ,37 .41 .36 .46 .21 .32 .39 .25 .38 -

42 .24 .35 .36 .32 .36 .36

e 2,

Mean Correlation = .32

e T St 00

Distances in Multidimensional Space

U -
- Uz -20 -
) u3 .17 4

«20 1T 14 .29 .27 .22 .34 .18 .31 .17 .22 ,26 .24 .25 .2
JH1 429 431 .40 .36 JHT .39 .41 .20 .17 WY .38 .27 U9
- .“0 027 033 028 .us 023 |u5 025 .20 .36 027 032 038
ud .14 .29 .40 - .15 .26 17 .28 .15 .22 .14 ,20 .19 .19 .27 .20
05 029 031 027 315 - 028 l36 535 l23 135 u11 -19 -29 029 028 037 |
U6 027 0”0 533 026 026 - ouu .50 c56 .51 -22 -“1 033 |u0 '31 136
U7 022 036 028 017 036 Q"“‘ - ;39 ou3 u53 v13 -33 .us 032 031 cus
Ue 03“ cu" Ous 028 035 050 039 - |33 956 .28 -30 039 c”‘ ouu 059
U9 -18 t39 023 015 u23 -56 ous u33 - -u6 .26 .3'4 |u° .uO -31 136
U10 |3‘ !“1 Ius .22 035 |51 153 .56 |u6 - .2“ 037 .u7 .ua cuz .5“
Ut .17 .20 .25 .14 .11 ,22 .13 .28 .26 .24 - .0B .13 .22 .14 .32
U12 .22 .17 .20 .20 .19 41 .33 .30 .34 .37 .08 - .21 .28 .20 .}
U13 026 lu1 036 |19 129 033 0“5 039 Ouo ou'r 513 .21 - 032 |31 nuu
Utk .24 (38 .27 .19 .29 .4O .32 .41 .40 .48 .22 .2B .32 - .29 .38

U15 .25 ‘27 .32 .27 .28 .31 n31 .uu 031 .u? .1"‘ 020 031 l29 - l35
U16 .2“ Oug 038 -20 !37 136 ||'.6 .59 .36 .5“ 032 031 0“" 038 l35 -

At AT e

o D B sihteanaca

Mean Correlation a ,32
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Low=Angle Strafe

Inter-Individual Correlation Matrix
W1 through W7 are individual weapons systems officers

Rating Scores
W1 W2 W3 W4 WS W6 WY

Wi -

W2 43 -
W3 49 49 -
w34 .37 .39 -
WS .09 .19 .15 .18 -
w6 .56 .50 .52 .39 17 -
W7 46 .44 45 .29 .12 .50

JU43 .49 .34 .09 .56 .ub
49 .37 .19 .50 4N
«39 15 .52 U5 ;
.18 <39 .29 by
JAT L2
+50

Mean Correlation = ,36
Distances in Multidimensional Space
W1 W2 W3 W4 WS w6 w7

e T e i gl Jin

W\ - 056 .I‘B 017 uuﬁ 151 052
w2 .56 - 51 .12 ,55 .52 .50
W3 W43 5t - 11 U5 H2 39
Wb T W12 W11 - 16 L1y LT
WS U6 .55 U5 416 - B3 U9
WG l51 152 ouz 111 053 - .5“
WT 52 .50 .39 .17 .49 54 -

Mean Correlation = ,39 i

et mtemia St md
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Low~Angle Strafe

Inter-Individual Correlation Matrix

I1 through I6 are individual instructor pilots
U1 through U16 are individual undergraduate pilots

In 12 I3 I4 Is 16

Rating Scores

‘ U1 019 016 118 115 |°9 021
: ve 17 .21 .28 .25 .22 .23
U3 11 09 .20 .16 13 N
vy .12 .09 18 4,09 LM
«13 .16 .23 4T 11 L6 3
ué .21 .22 .22 .21 .28 .32 1
U7 L 1T W31 21 26 W22
v .23 .19 ,26 .22 .23 .27
Ug 17 i .33 .18 .29 .27
! vto .30 .29 .41 .32 .32 .27 b
9 AR |°6 t°3 A tou .00 11
3 v1e .29 .20 .26 .28 ,26 .28
U113 .21 .21 .25 .21 .32 .22
Ut .13 Gt .32 .20 .23 W21
V15 .10 .18 .35 .14 .18 .23 ,
U16 .15 .13 .30 .24 .23 .13 ]

[ =
L8]

i e e s n i e e s -

Mean Correlation = ,20

Distances in Multidimensional Space

Uy .22 .24 .20 .20 .17 .19
U2 .23 .25 .30 .23 .29 .21
Ul .10 12 .23 .18 .1t .06
o .11 a1 .19 13 .09 .05
us .12 .20 .27 .21 .15 .18 4

U6 .21 .19 .25 .24 .30 .30

1 UT 19 19 .35 .25 .29 2

us .22 .22 .34 .28 .30 .27

ug .19 17 .28 .18 .26 .28

U0 ,29 .31 .45 .35 .34 .26

U1 .08 .04 .15 .08 .03 .0OA
U112 .37 .29 .31 .38 .34 .30 .
U13 W24 18 .24 21 27 .15 !
Ui .21 .20 .37 .25 W34 .25 :

U1s .19 .16 .36 .21 .20 .25

U6 .21 .19 L34 .30 .23 M1

Mean Correlation » .22
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Low=Angle Strafe
Inter-~Individual Correlation Matrix

I1 through 16 are individual inatructor pilots
W1 through W7 are individual weapons asystems officers

Rating Soores |

i I1 12 I3 I4 15 16

) W1 .40 MO 42 .52 .54 44
| W2 .38 .32 .44 .44 .45 .34
; W3 .50 .43 .50 54 45 ,u8
w4 .36 .38 .42 .40 .39 .38
W5 .05 .11 .18 .05 .05 .16
W6 .45 .45 .51 .61 .46 .U5 |
W7 W45 45 L34 .81 JM46 JUT 4

Mean Correlation = .39

- Matances in Multidimensional Space
In 12 I3 I4 I5 16

W1 .40 .36 .48 .48 .47 .35
H2 051 .“8 |52 063 'us o“u
W3 .39 .45 .53 .45 U3 .38
- Wi .16 .15 0 12 ,03 .26
: W5 .44 49 .51 .55 .52 .46
W6 46 .50 .55 .62 4T .52
W7 .51 .54 .42 .57 .43 .45

Mean Correlation = ,U3

VS-SV R g T - R P
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Low=Angle Strafe
Inter-Individual Correlation Matrix

U1 through U16 are individual undergraduate pilots
W1 through W7 are individual weapons systems officers

W1 W2 W3 Wh W5 W6 W7

Rating Soores

Ur .20 .28 .21 .21 .13 .22 .16
v2 ,26 .36 .24 .30 .18 .31 .25
U3 .15 .27 .16 .23 .20 .26 .11
ua .14 .22 .18 .16 .23 .23 .09
Us .21 .25 .20 .21 .16 .19 .16
U6 |25 o36 -30 023 -18 036 .29
U7 31 40,21 30 15 .33 .22
U8 .28 .37 .25 .25 .19 .35 .28
U9 .26 .28 .22 .31 .14 .33 .23
U10 .35 .45 41 .33 .20 44 28
Uit .06 .08 .13 .10 ,OT .15 .03
Uiz .28 .33 .33 .35 .10 .30 .24
U13 .33 .33 .20 .25 .09 .32 .21
Uik .27 .30 .22 .23 .17 .30 .22
Uis .26 .26 .17 .21 .26 .30 .14
U6 .26 .32 .26 .31 .14 ,29 .18

Mean Correlation = .24
Distances in Multidimensional Space

Uy .23 .15 .21 .15 .25 ,26 .30
v2 .41 .23 .29 .16 .26 .28 .35
U3 .25 .18 ,20 .08 .14 ,21 .19
U4 .20 ,09 .12 .09 .07 .18 .1
Us .30 .25 .22 .12 .29 .29 .26
v6 .35 .26 .28 .11 .25 .37 .28
U? .33 .25 .26 .06 .31 .39 .25
U8 .46 ,28 .31 .12 .37 .36 .32
U9 .27 .23 .32 .11 .25 .36 .25
Ui0 45 41 34 10 .37 .50 .34
viy .05 .17 .21 .01 .08 .10 ,08
vi2 .31 .38 .39 .06 .33 .u2 .26
U13 .30 .22 .21 .03 .27 .28 .24
U1 .32 .26 .28 .15 .29 .32 .}
U1s .33 ,20 .28 .23 .29 .35 .22
v1é .40 .31 .38 .05 .34 .34 .26

Mean Correlation s .25
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